8% 96 微 10 Ni Ni 307 84 32 XZ

CONTENTS

Some Systematics of Autoionization Features in Atoms By Joseph Berkowitz	1
Symmetry and Angular Momentum in Collisions with Laser-Excited Polarized Atoms By Eleanor E. B. Campbell, Hartmut Schmidt, and Ingolf V. Hertel	37
Graphs in Chemical Physics of Polymers By Semion I. Kuchanov, Sergei V. Korolev, and Sergei V. Panyukov	115
AUTHOR INDEX	327
Subject Index	335

91 31 inf. 50 35; 32 (% 34 85 (9)

OH 69

SOME SYSTEMATICS OF AUTOIONIZATION FEATURES IN ATOMS

JOSEPH BERKOWITZ

Chemistry Division, Argonne National Laboratory, Argonne, Illinois, U.S.A.

CONTENTS

- I. Introduction
- II. Systematic Trends Inferred from Experiments
 - A. Width of ns and nd Resonances
 - B. Limiting Values of Some Narrow Resonances in First-Row Atoms
 - C. Autoionization Line Shapes
- III. Characteristics of Discrete-Continuum Interaction
 - A. Formalism
 - B. Integral Involving Rydberg and Continuum Wave Functions
 - C. Integral Involving Core Functions
 - D. Improved Wave Functions
 - E. Z-Dependence of Resonance Width in Isoelectronic Sequence
- IV. Discussion
 - A. Noble Gases
 - B. Halogen Atoms
 - C. Chalcogen Atoms
 - D. Group V (Pnicogen) Atoms
 - 1. Autoionization Converging to ¹D and ¹S
 - 2. Autoionization between Fine-Structure Components ${}^3P_0 {}^3P_1 {}^3P_2$
 - E. Group IV Atoms
 - 1. Autoionization between Spin-Orbit ${}^2P_{1/2} {}^2P_{3/2}$
 - 2. Excitation from s Shell
 - F. Group III Atoms
 - G. Group II (Alkaline-Earth) Atoms
 - H. Group I (Alkali) Atoms
- V. Summary

References

SYMMETRY AND ANGULAR MOMENTUM IN COLLISIONS WITH LASER-EXCITED POLARIZED ATOMS

ELEANOR E. B. CAMPBELL

Fakultaet Fuer Physik, Universitaet Freiburg, Freiburg, West Germany

HARTMUT SCHMIDT

Braun A. G., Wiesbaden, West Germany

and

INGOLF V. HERTEL

Fakultaet Fuer Physik, Universitaet Freiburg, Freiburg, West Germany

CONTENTS

- I. Introduction
- II. Kind of Questions One May Ask
 - A. Optical Excitation Prior to Collision
 - B. Inverse Collision
- III. Well-Understood Case with Planar Symmetry
- IV. Two Examples with Cylindrical Geometry
 - A. Studies of Intersystem Crossings in Ca*-Rare Gas Collisions
 - B. Associative Ionization
- V. Spin-Orbit Interaction
 - A. Nonadiabatic Transitions in Na⁺ + Na* System
 - B. Orientation Effects in Na(3²P_{3/2}), K(4²P_{3/2}) + Rare-Gas Systems
- VI. Charge Exchange in Na⁺ + Na^{*}
- VII. Electronic-to-Rovibrational Energy Transfer
- VIII. Conclusion
 - References

GRAPHS IN CHEMICAL PHYSICS OF POLYMERS

SEMION I. KUCHANOV, SERGEI V. KOROLEV, AND SERGEI V. PANYUKOV

Polymer Chemistry Department, The Moscow State University, Moscow, U.S.S.R.

CONTENTS

Introduction

- I. Models and Approaches Used for Description of Branched and Network Polymers
 - A. Molecular Graphs
 - B. Ensembles of Polymeric Molecules and Random Graphs
 - C. Flory Model (Model I)
 - D. Models of Substitution Effect (Model II)
 - E. Invariance Principle
 - F. Models Allowing for Cyclization
 - G. Kirchhoff Matrix and Conformation of Molecules
 - H. Macromolecules as Graphs on Lattice and Scaling
 - I. Percolation and Other Lattice Statistical Models
- II. Subgraphs of Molecular Graphs and Microstructure of Polymers
 - A. Macromolecular Fragments and Their Subgraphs
 - B. Subgraph Stoichiometry
 - C. Probability Measure on Subgraphs
 - D. Trails and Molecular Conformations
- III. Molecules as Graphs with Coordinates and Consideration of Cyclization
 - A. Graphs Embedded in Three-Dimensional Space
 - B. Gibbs Distribution and Probability Measure on Graphs in Space
 - C. Transition to Connected Graphs
 - D. Correlation Functions and Their Generating Functionals
 - E. Equations for Generating Functionals
 - F. Case Study: Model I
 - G. One-Point Correlators and MWD
 - H. Estimation of Contributions from Cycles of Different Topologies
 - I. Perturbation Theory
 - J. Statistics of Cyclic Fragments and Possible Generalizations of Model
- IV. Diagram Technique and Field Theory
 - A. Stochastic Fields and Functional Integration
 - B. Diagram Technique

- C. Spatial Physical Interactions
- D. Diagram Technique in Lifshitz-Erukhimovich Model
- E. Analytical Methods of Field Theory
- F Self-Consistent Field Approximation
- G. Multicomponent Systems and Extension of Potts Model
- H. Theory of Swelling for Stochastic Polymer Networks
- I. Other Field-Theoretic Approaches to Description of Branching Polymers
- V. Conformations of Gaussian Molecules and Spectral Properties of Their Graphs
 - A. Space Metric and Graph Metric
 - B. Using Kirchhoff Matrix to Calculate Distributions in Radius of Gyration and Other Conformational Characteristics of Macromolecules
 - C. Spectrum of Kirchhoff Matrix for Regular Networks
 - D. Spectral Density and Dynamic Properties of Molecule

Conclusion

Appendix: Elementary Concepts of Theory of Graphs

References

