65 25 Th

LIGAND-STABILIZED METAL CLUSTERS: STRUCTURE, BONDING, FLUXIONALITY, AND THE METALLIC STATE	1
by Karl C. C. Kharas and Lawrence F. Dahl	
STRUCTURAL MODELS FOR CLUSTERS PRODUCED IN A FREE JET EXPANSION	45
by J. Farges, M. F. de Feraudy, B. Raoult, and G. Torchet	
SOLID-LIQUID PHASE BEHAVIOR IN MICROCLUSTERS	75
by R. Stephen Berry, Thomas L. Beck, Heidi L Davis, and Julius Jellinek	
THE QUANTUM MECHANICS OF CLUSTERS	139
by David L. Freeman and J. D. Doll	
SMALL CLUSTERS—REACTIONS OF VAN DER WAALS MOLECULES	181
by R. Naaman	
MOLECULAR SURFACE CHEMISTRY: REACTIONS OF GAS-PHASE METAL CLUSTERS	211
by Andrew Kaldor, Donald M. Cox, and Mitchell R. Zakin	2 5 23
NUCLEATION OF CRYSTALS FROM THE MELT	263
by David W. Oxtoby	
VIBRATIONAL RELAXATION IN CONDENSED PHASES	297
by J. Chesnoy and G. M. Gale	
SIZE EFFECTS IN ENCOUNTER AND REACTION DYNAMICS	357
by Mark G. Sceats	
ENERGY PROFILES FOR ORGANIC REACTIONS IN SOLUTION	469
by William L. Jorgensen	
ACTIVATED RATE PROCESSES IN CONDENSED PHASES: THE KRAMERS THEORY REVISITED	489
by Abraham Nitzan	

П	٦	ч	,
	3		
٠,	4		

CONTENTS

AUTHOR INDEX	557
SUBJECT INDEX	583

(A)

LIGAND-STABILIZED METAL CLUSTERS: STRUCTURE, BONDING, FLUXIONALITY, AND THE METALLIC STATE

KARL C. C. KHARAS AND LAWRENCE F. DAHL

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706

CONTENTS

- I. Brief Survey of Metal Cluster Compounds
- II. Structure and Bonding in Metal Clusters
 - A. The Isolobal Analogy
 - B. Lauher's Rule
 - C. Edge-Localized Versus Delocalized Bonding
 - D. The Polyhedral Skeletal Electron-Pair Model
 - E. Tensor Surface Harmonic Theory
 - F. The Topological Electron-Counting Model
 - G. The Graph-Theory-Derived Model
 - H. Electron-Counting Procedures for Large Clusters
 - I. Applications of Electron-Counting Methods
 - J. Importance of d-d Metal Interactions
- III. Stereochemical Nonrigidity of Metal Atoms in Clusters
 - A. Metal Cluster Motion in a Fixed Ligand Cage
 - B. Metal-Core Rearrangements in Several Tetrametal Clusters
 - C. Intertriangular Metal Rotations About Pseudo Threefold Axes
 - D. Metal Fragment Migration Over Cluster Surfaces
 - E. Metal Cluster "Breathing" Fluxionality
 - F. Fluxionality in Gold Clusters
 - G. Icosahedral Interconversions
 - H. Octahedral Interconversions
 - I. Importance of Connectivity and Electron-Counting Rules
- IV. Clusters, Surfaces, and the Metallic State
 - A. Structural Chemistry of Large Metal Carbonyl Clusters
 - B. Large Metal Phosphine Clusters
 - C. Transition of Metal Clusters Toward the Metallic State
 - 1. Unusual Magnetic Behavior
 - 2. A New, Cluster-Based Electronic Conductor
 - D. Nonexistence of Binary Palladium Carbonyl Clusters
- V. Concluding Remarks

79 to 6000 200 -0.0 -0.0 -0.0 3); 82 55 S 39 S 85

STRUCTURAL MODELS FOR CLUSTERS PRODUCED IN A FREE JET EXPANSION

J. FARGES, M. F. DE FERAUDY, B. RAOULT, and G. TORCHET

Laboratoire de Physique des Solides, Université de Paris Sud, F-91405 Orsay, France

CONTENTS

- I. Introduction
- II. Experiment
 - A. Electron Diffraction Apparatus
 - B. Diffraction Patterns
- III. Geometrical Models with Fivefold Symmetry
 - A. Models with $N \leq 13$
 - B. Models Made of Double Icosahedron Units
 - C. Multilayer Icosahedra
- IV. Relaxation of Geometrical Models
 - A. DIC Models
 - B. MIC Models
 - 1. Face Convexity
 - 2. Radial Relaxation
 - 3. Tangential Relaxation
 - C. Structural Transitions
- V. Intermediate Models
 - A. Polyicosahedral Models
 - B. Construction of an MIC Layer
 - C. Comment on Metallic Clusters
 - 1. Stability
 - 2. Structure
- VI. Molecular Clusters
 - A. CO₂ and SF₆
 - B. N₂ and CH₄
 - $C. H_2O$

SOLID-LIQUID PHASE BEHAVIOR IN MICROCLUSTERS

R. STEPHEN BERRY, THOMAS L. BECK, AND HEIDI L. DAVIS

Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois 60637

JULIUS JELLINEK

Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439

CONTENTS

- I. Introduction-
 - A. The Evidence Concerning "Phases" for Clusters
 - B. Consequences of the Finite Size
- II. A Quantum Statistical Theory
 - A. Stage 1: Properties, if Two "Phases" Exist; the Theory of Melting and Freezing of Microclusters
 - B. Stage 2: Requirements for Coexistence and Their Implications
- III. Computer Simulation Studies of the Phase Change
 - A. Background
 - B. Isoergic Simulations
 - 1. Methodology
 - 2. Physical Properties
 - 3. Ar_{13} and Ar_N
 - 4. Mechanistic Studies
 - C. Isothermal Simulations
 - 1. Methods
 - 2. Monte Carlo Results
 - 3. Constant-Temperature MD Simulations
- IV. Summary

THE QUANTUM MECHANICS OF CLUSTERS

DAVID L. FREEMAN

Department of Chemistry, University of Rhode Island, Kingston, Rhode Island 02881

J. D. DOLL

Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

- I. Introduction
- II. Homogeneous Steady-State Nucleation Rates
- III. Physical Clusters in a Vapor and the Evaluation of Their Properties
- IV. Fourier Path Integral Monte Carlo Methods
- V. Argon Cluster Results
- VI. Magic Numbers
- VII. Conclusions
 - References

35 08 装: **3** 3 XI SI (2)· **光** #3 #36 8. **8** 85° 8.5

SMALL CLUSTERS—REACTIONS OF VAN DER WAALS MOLECULES

R. NAAMAN

Department of Isotope Research, Weizmann Institute of Science, Rehovot, Israel

CONTENTS

- I. Introduction
 - A. Kinematic Effects
 - B. Dynamic Effects
 - C. Steric Effects
 - D. Electronic Effects
 - E. Energetics
- II. Experimental Concepts
 - A. Physical Separation
 - B. Condensation Modeling
- III. Intracluster Reactions
- IV. Intercluster Reactions
 - A. Recombination Reactions
 - B. Exchange of van der Waals Bonds
 - C. Exchange Reactions with Metal Atoms
 - D. Conclusions and Generalizations
- V. Future Prospects

Si .

MOLECULAR SURFACE CHEMISTRY: REACTIONS OF GAS-PHASE METAL CLUSTERS

ANDREW KALDOR, DONALD M. COX, AND MITCHELL R. ZAKIN

Corporate Research Laboratory, Exxon Research and Engineering Company, Annandale, New Jersey 08801

I.	Introduction
1990,000	

- II. Experimental Approach
 - A. Source
 - B. Sample
 - C. Cluster Growth
 - D. Reactor Considerations
 - E. Detection
 - F. Mass Spectrometry
- III. Ion Chemistry Studies
- IV. Physical Characterization of Gas-Phase Clusters
- V. Chemical Reactivity
- VI. Molecular Addition Reactions
 - A. Hydrogen
 - B. Nitrogen
 - C. Methane
 - D. Carbon Monoxide
 - E. Oxygen
 - F. Ammonia
 - G. Methanol
 - H. Water
- VII. Addition Reactions with Gas-Phase Products
 - A. "Dehydrogenation" Reactions
 - B. Benzene
 - C. Other C₆ Hydrocarbons
 - D. Carbon Dioxide
 - E. Hydrogen Sulfide
- VIII. Vibrational Spectroscopy of Metal Cluster Adducts
 - IX. Model of Cluster Reactivity
 - A. Empirical Fit
 - B. Electronic Model
 - X. Summary
 - References

35 \$5 A 奖 ₩e (8**4** 46 27/4 35 第一章 第二章 25 920

NUCLEATION OF CRYSTALS FROM THE MELT

DAVID W. OXTOBY

James Franck Institute and Department of Chemistry, University of Chicago, Chicago, Illinois 60637

CONTENTS

	Intend	
I.	IIIIIOU	luction

- II. Classical Nucleation Theory
 - A. Homogeneous Nucleation
 - B. Heterogeneous Nucleation
- III. The Liquid-Solid Interface
 - A. Experimental Measurements
 - B. Computer Simulation Results
 - C. Theoretical Models
 - D. Density Functional Theories of the Interface
 - E. Binary Mixtures
- IV. Experimental Results
 - A. Single-Component Systems
 - B. Pressure-Dependent Nucleation
 - C. Metal Alloys
 - D. Water and Aqueous Solutions
- V. Beyond Classical Nucleation Theory
 - A. The Density Functional Approach
 - B. Computer Simulations of Nucleation
 - C. Heterogeneous Nucleation

VIBRATIONAL RELAXATION IN CONDENSED PHASES

J. CHESNOY AND G. M. GALE

Laboratoire d'Optique Quantique du C.N.R.S., Ecole Polytechnique,
Palaiseau, France

CONTENTS

- I. Introduction
 - A. Preamble
 - B. Presentation of Dephasing and Energy Relaxation
 - C. Comparison of Experimental Techniques
- II. Energy Relaxation in Liquids
 - A. Distribution Function Methods
 - B. Pure Simple Fluids
 - C. Fluid Mixtures
 - D. Vibration-Vibration Transfer in Liquids
 - E. Anisotropic Molecules
 - F. Large Molecules and Higher Vibrational Levels
 - G. Dense Phase Modification of the Potential
- III. Vibrational Dephasing in Liquids
 - A. Calculation of Dephasing Rates
 - B. Modulation Speed and Inhomogeneous Broadening
 - C. The Role of Long-Range Forces
- IV. Relaxation in Solids and Across Phase Transitions
 - A. Vibrational Relaxation in Pure Solids
 - B. Hybrid Levels and Two-Vibron States
 - C. Propagation of Vibrational Energy in Solids
 - D. The Liquid-Solid Phase Transition
 - E. The Approach to Critical Points

 $, \leqslant$

ENERGY PROFILES FOR ORGANIC REACTIONS IN SOLUTION

WILLIAM L. JORGENSEN

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907

- I. Introduction
- II. Methodology
- III. Computed Potentials of Mean Force
 - A. S_N2 Reaction of Cl⁻ + CH₃Cl
 - B. Addition Reaction of $OH^- + H_2C = 0$
 - C. (CH₃)₃C⁺Cl⁻ Ion Pairs in Water
- IV. Concluding Remarks
 References

ACTIVATED RATE PROCESSES IN CONDENSED PHASES: THE KRAMERS THEORY REVISITED

ABRAHAM NITZAN

School of Chemistry, Sackler Faculty of Sciences Tel Aviv University, Tel Aviv 69978, Israel

CONTENTS

- I. Introduction
- II. The Kramers Treatment
 - A. Moderate to Large Damping
 - B. Low Damping
- III. The Need for Generalization of the Kramers Theory
- IV. The Generalized Kramers Model
- V. Non-Markovian Effects in the One-Dimensional Case
- VI. The Escape Rate of a Non-Markov Multidimensional Process
 - A. Barrier Dynamics
 - B. Well Dynamics
 - C. The Combined Solution
- VII. Escape in the Presence of External Periodic Force: The Low-Friction Limit
 - A. Phase-Diffusing Driving Field
 - B. External Oscillating Force in the Fast Thermal Dephasing Limit
- VIII. Numerical Results and Applications
- Appendix A. Evaluation of the Reactive Mode Well Distribution
- Appendix B. Evaluation of τ [Eqs. (6.51)]