7<u>20</u> W) 被 62 €(23 79 河. \mathfrak{A}

CONTENTS

LEVEL STRUCTURE AND DYNAMICS FROM DIATOMICS TO CLUSTERS	1
By Joshua Jortner, R. D. Levine and Stuart A. Rice	
Independent and Collective Behavior within Atoms and Molecules	35
By R. Stephen Berry and Jeffrey L. Krause	
FLUCTUATIONS IN SPECTRAL INTENSITIES AND TRANSITION RATES	53
By R. D. Levine	
SELF-CONSISTENT-FIELD METHODS FOR VIBRATIONAL EXCITATIONS IN POLYATOMIC SYSTEMS	97
By R. B. Gerber and Mark A. Ratner	**
SPECTROSCOPY AND PHOTODYNAMICS OF RELATIVELY LARGE MOLECULES	133
By Jan Kommandeur	
SOLVATION EFFECTS IN FOUR-WAVE MIXING AND SPONTANEOUS RAMAN AND FLUORESCENCE LINESHAPES OF POLYATOMIC MOLECULES	165
By Shaul Mukamel	•
On the Statistical Theory of Unimolecular Processes	231
By David M. Wardlaw and R. A. Marcus	
PICOSECOND TIME-RESOLVED DYNAMICS OF VIBRATIONAL-ENERGY REDISTRIBUTION AND COHERENCE IN BEAM-ISOLATED MOLECULES	265
By Peter M. Felker and Ahmed H. Zewail	
CHAOS AND REACTION DYNAMICS	365
By Paul Brumer and Moshe Shapiro	
COHERENT PULSE SEQUENCE CONTROL OF PRODUCT FORMATION IN CHEMICAL REACTIONS	441
By David J. Tannor and Stuart A. Rice	
AUTHOR INDEX	525
Subject Index	543

LEVEL STRUCTURE AND DYNAMICS FROM DIATOMICS TO CLUSTERS*

JOSHUA JORTNER

School of Chemistry, Tel-Aviv University, Ramat Aviv 69978, Israel

R. D. LEVINE

The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel

STUART A. RICE

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA

CONTENTS

- I. Introduction
- II. High-Resolution Spectroscopy and Intramolecular Dynamics
- III. Laser Studies of Chemical Reactivity
- IV. Level Structure and Dynamics of Clusters

INDEPENDENT AND COLLECTIVE BEHAVIOR WITHIN ATOMS AND MOLECULES

R. STEPHEN BERRY AND JEFFREY L. KRAUSE

Department of Chemistry and the James Franck Institute, The University of Chicago, Chicago, Illinois 60637

CONTENTS

- I. Introduction
- II. Origins of the Molecular Picture of Atoms
- III. The Collective Moleculelike Picture of He**
- IV. The Physical Basis of Collective, Moleculelike Behavior
- V. The Alkaline Earth Atoms and Alkali Negative Ions
- VI. Independent-Particle Behavior in Molecules?
- VII. Concluding Remarks

統 122 0 M 38 <u>-</u> g-2 ₹© <u>54</u> ₩ 96 200

FLUCTUATIONS IN SPECTRAL INTENSITIES AND TRANSITION RATES

R. D. LEVINE

The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University, Jerusalem 91904, Israel

CONTENTS

- I. Introduction
- II. The Distribution of Fluctuations
 - A. Strength Function and Sum Rules
 - B. The Distribution of Intensities
 - C. The Distribution of Maximal Entropy
 - D. Complex Transition Amplitude
 - E. The Cumulative Distribution
 - F. The χ-Square Distribution
 - G. Determining the Number of Degrees of Freedom
 - H. Lifetimes and Transition Rates
 - I. Discussion
- III. The Distribution of Spectra
 - A. The Envelope
 - B. Fluctuations
 - C. The Probability of a Spectrum
 - D. The Effective Number of States in the Spectrum
 - E. The Envelope Function and the Classical Limit
 - F. Lifetimes and Transition Rates
- IV. Summary
 - A. Handbook
 - B. Fluctuations

Appendix: The χ -Square Distribution

SELF-CONSISTENT-FIELD METHODS FOR VIBRATIONAL EXCITATIONS IN POLYATOMIC SYSTEMS

R. B. GERBER

Department of Physical Chemistry and The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem,

Jerusalem 91904, Israel

MARK A. RATNER

Department of Chemistry, Northwestern University, Evanston, Illinois 60201

CONTENTS

- I. Introduction
- II. SCF Method for Vibrational Energy Levels and the Choice of Coordinates
 - A. Quantum-Mechanical and Semiclassical SCF
 - B. SCF for Different Coordinate Systems
 - C. Optimal-Coordinates SCF
 - D. Extensions for Nearly Degenerate States: CI-SCF
- III. TDSCF and Intramolecular Vibrational Energy Transfer
 - A. Quantum, Classical, and Semiclassical TDSCF
 - B. TDSCF for Weak and for Strong Coupling (RRKM) Systems
 - C. Properties, Validity, and Limitations of TDSCF
- IV. Concluding Remarks

SPECTROSCOPY AND PHOTODYNAMICS OF RELATIVELY LARGE MOLECULES

JAN KOMMANDEUR

Laboratory for Physical Chemistry, The University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

CONTENTS

- I. Introduction
- II. Theory
- III. The Spectroscopy of the P(1) Rotational Member of the ${}^{1}B_{3u}(0-0)$ Transition of Pyrazine
- IV. The Time Dependence of the Fluorescence of the Rotationless Excited Singlet State of Pyrazine
- V. The Quantum Yield and the Lifetime of the Rotationless ${}^{1}B_{3u}$ State of Pyrazine
- VI. The Lifetimes and the Quantum Yields of Higher J' States of the ${}^{1}B_{3u}$ State of Pyrazine
- VII. Conclusions

SOLVATION EFFECTS IN FOUR-WAVE MIXING AND SPONTANEOUS RAMAN AND FLUORESCENCE LINESHAPES OF POLYATOMIC MOLECULES

SHAUL MUKAMEL

Department of Chemistry, University of Rochester, Rochester, New York 14627

CONTENTS

- I. Introduction
- II. The Nonlinear Response Function for Four-Wave Mixing
- III. A Molecular Microscopic Model for the Nonlinear Response Function
- IV. The Factorization Approximation
 - V. Correlation Functions for Spontaneous Raman and Fluorescence Lineshapes
- VI. Nonlinear Optics of Polyatomic Harmonic Molecules in Condensed Phases—"Eigenstate-Free" Spectroscopy
- VII. Coherent versus Spontaneous Raman Spectroscopy
- VIII. The Role of Vibrational Relaxation in Spontaneous Raman and Fluorescence Spectroscopy
 - IX. Intramolecular Vibrational Redistribution (IVR) in Ultracold Molecules in Supersonic.

 Beams
 - X. An Eigenstate-Free Expression for the Nonlinear Response Function
 - XI. Concluding Remarks

ON THE STATISTICAL THEORY OF UNIMOLECULAR PROCESSES

DAVID M. WARDLAW*

Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada

R. A. MARCUS

Arthur Amos Noyes Laboratory of Chemical Physics[†], California Institute of Technology, Pasadena, California 91125

CONTENTS

- I. Introduction
- II. Outline of Statistical Theories
 - A. RRKM Theory
 - B. Loose Transition State and Angular Momentum Conservation (PST)
 - C. General Transition State and Angular Momentum Conservation (RRKM)
 - D. Vibrationally Adiabatic Transition State and SACM
- III. Applications
 - A. CH₃ Recombination
 - 1. High-Pressure Rate
 - 2. Pressure-Dependent Rates
 - 3. Dissociation of Vibrationally Excited C₂H₆
 - B. H₂O₂ Dissociation
 - C. NCNO Dissociation
 - D. H₂CO Dissociation
- IV. Dynamical Aspects and Statistical Behavior

- * NSERC of Canada University Research Fellow.
- [†] Contribution No. 7473.

76) 95 29

PICOSECOND TIME-RESOLVED DYNAMICS OF VIBRATIONAL-ENERGY REDISTRIBUTION AND COHERENCE IN BEAM-ISOLATED MOLECULES

PETER M. FELKER* AND AHMED H. ZEWAIL

Arthur Amos Noyes Laboratory of Chemical Physics,[†] California Institute of Technology, Pasadena, California, 91125

CONTENTS

- I. Introduction and Perspectives
- II. Earlier Advances and Other Recent Approaches
 - A. Steady-State Spectroscopic Studies of IVR
 - B. Chemical Timing Studies of IVR in Bulbs
 - C. Picosecond-gated Fluorescence in Bulbs
- III. Picosecond-Molecular-Beam Studies of IVR
 - A. The Technique and Its Application to IVR
 - B. Theoretical Description of Vibrational Coherence and IVR
 - Two-level IVR
 - 2. IVR between N levels
 - C. Applications to Molecular Systems
 - 1. Anthracene
 - 2. $9-d_1$ -Anthracene and d_{10} -Anthracene
 - 3. t-Stilbene
 - 4. Alkylanilines: "Ring and Tail" Systems
 - D. Manifestations of Molecular Rotations
 - 1. Effects of Rotations on Anharmonic Coupling: Mismatches of Rotational Constants
 - 2. Rotational Coherence Effects
- IV. Concluding Remarks

- * Current address: Department of Chemistry, University of California, Los Angeles, CA 90024.
 - [†] Contribution No. 7504.

CHAOS AND REACTION DYNAMICS

PAUL BRUMER

Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A1

MOSHE SHAPIRO

Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel

CONTENTS

- I. Introduction
- II. Classical Mechanics
 - A. Input from Classical Ergodic Theory: What is Chaos?
 - B. Signatures of Chaos
 - C. Statistical Behavior and Chaos
 - 1. Phenomenological Criteria For Statistical Dynamics
 - 2. Numerical Studies of Bound-State Relaxation
 - 3. Formal Links to Chaos: Unimolecular Decay
- III. Classical-Quantum Correspondence
 - A. Why Should Classical Mechanics Work?
 - B. The Liouville Approach: Motivation
 - 1. Classical Phase Space Distributions
 - 2. Quantum "Phase Space" Distributions
 - 3. Classical versus Quantum Mechanics: Time-Independent Structure
 - 4. Classical versus Quantum Mechanics: Time Evolution
 - 5. Classical-Quantum Correspondence
 - 6. Sample Computation: Stadium Dynamics
- IV. Quantum Chaos and Reaction Dynamics
 - A. Chaos and Spatial Correlation Functions
 - 1. Stationary Eigenfunctions
 - 2. Time-Dependent Results
 - B. Statistical Reactions and Chaos
 - 1. Resonance-Dominated Behavior
 - 2. Quantum Adiabaticity
 - 3. Statistical and Nonstatistical Decay Rates
- V. Summary

COHERENT PULSE SEQUENCE CONTROL OF PRODUCT FORMATION IN CHEMICAL REACTIONS

DAVID J. TANNOR† AND STUART A. RICE

The Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

CONTENTS

- I. Introduction
- II. Wavepacket Dynamics
 - A. Photodissociation
 - B. Photoabsorption
 - C. Resonance Raman Scattering
- III. Time-Dependent CARS
 - A. Motivation
 - B. Theoretical Considerations
 - C. Some Examples
- IV. Photon Echoes in Multilevel Systems
 - A. Motivation
 - B. Wavefunction Representation of the Photon Echo in a Two-Level System
 - C. The Photon Echo in a Multilevel System
 - D. The Role of Rotations
 - E. Further Comments
 - F. Appendix
- V. Coherent Pulse Sequence Control of Product Formation in Chemical Reactions
 - A. Motivation
 - B. General Remarks
 - C. General Theory
 - 1. Second-Order Time-Dependent Perturbation Theory
 - 2. Variational Formulation of Control of Chemical Products
 - D. Numerical Calculation of Wavepacket Propagation
 - E. Quantum-Mechanical Results
 - 1. Harmonic Excited-State Surface
 - 2. Anharmonic Excited-State Surfaces
 - 3. Classical Propagation of the Wigner Distribution
 - F. Alternative Schemes
- VI. Concluding Remarks

References

[†] Present address: Department of Chemistry, Illinois Institute of Technology, Chicago, IL 60616.