

PHOTODISSOCIATION OF DIATOMIC MOLECULES TO OPEN SHELL ATOMS By Sherwin J. Singer, Karl F. Freed, and Yehuda B. Band	
REDUCED DIMENSIONALITY THEORIES OF QUANTUM REACTIVE SCATTERING By Joel M. Bowman	115
THE THEORETICAL INVESTIGATION OF THE ELECTRON AFFINITY OF CHEMICAL COMPOUNDS By G. L. Gutsev and A. I. Boldyrev	169
SCATTERING THEORY IN SUPERSPACE By C. George, F. Mayne, and I. Prigogine	223
STATISTICAL PHYSICS OF POLYMER SOLUTIONS: Conformation-Space Renormalization-Group Approach By Yoshitsugu Oono	301
AUTHOR INDEX	439
Subject Index	451

PHOTODISSOCIATION OF DIATOMIC MOLECULES TO OPEN SHELL ATOMS

SHERWIN J. SINGER AND KARL F. FREED

The Department of Chemistry and The James Franck Institute The University of Chicago, Chicago, Illinois 60637


and

YEHUDA B. BAND

The Department of Chemistry
Ben Gurion University of the Negev, Beer-Sheva, Israel

I.	Intr	oduction	2
	A.	The Importance of Nonadiabatic Processes in Photodissociation	3
	B.	Basic Physical Ideas	6
	C.	Outline of this Review.	8
II.	Rev	iew of Experimental Measurements	9
III.	Molecular and Atomic Basis Functions		
	A.	Hund's Case (a) Representation	20
	B.	The Asymptotic Large Distance Limit	23
	C.	Hund's Case (b) Representation	26
	D.	Hund's Case (c) Representation	29
	E.	Evaluation of Matrix Elements of the Hamiltonian	31
ÍV.	Diff	ferential Photodissociation Cross Sections	35
	A.	The Differential Cross Section in Terms of Irreducible Liouville Space	
inf.		Operators	41
	В.	Analysis of Intermediate-State Density Matrix	44
	C.	Analysis of Half-Collision Operator	48
	D.	Analysis of Geometrical Matrix U [†]	49
	E.	Analysis of Fluorescence Detection Operator 2 [†]	50
V.	The	Dynamical Problem	52
	A.	Numerical Methods	54
	В.	Adiabatic Treatment of the Molecular Region	56

	C	Dichatic on Bassil Approximation	60
	C.	Diabatic or Recoil Approximation	A 20 - 20 C
	D.	J-Dependent Recoil Limit	63
	E.	J-Independent Recoil Limit	69
	F.	Reduction of J-Independent Recoil Limit to Some Well-Known Results	84
	G.	Completely Adiabatic Dissociation	90
VI.	Numerical Calculations		92
	A.	$NaH + hv \rightarrow Na(3^{2}P) + H(1^{2}S)$	92
	B.	$CH^+ + h\nu \rightarrow C^+(2^2P) + H(1^2S)$	98
		$Na_2(X^{1}\Sigma_q) + h\nu \rightarrow Na(3^{2}P) + Na(3^{2}S)$	103
VII.		scussion	105
Ackı	nowl	edgments	108
Refe			109

REDUCED DIMENSIONALITY THEORIES OF QUANTUM REACTIVE SCATTERING

JOEL M. BOWMAN*

The James Franck Institute
The University of Chicago, Chicago, Illinois

I.	Introduction			
II.	Red	luced Dimensionality Theories	118	
	A.	Hierarchy of Reduced Dimensionality Theories	121	
		1. Full Adiabatic Bend Theory	124	
		2. CEQB Theory	124	
		3. CEQ Theory	126	
		4. One-Dimensional Reaction Path Theory	126	
		5. Transition State Theory	127	
	B.	Correlation between Adiabatic Bending and Free-Rotor States	127	
III.	The	rmal and Vibrational State-to-State Rate Constants	130	
IV.	. Differential Cross Sections			
V.	App	olications of the CEQ and CEQB Theories	136	
	A.	$\mathbf{H} + \mathbf{H_2}(v=0)$	136	
	B.	$H + H_2(v = 1)$	141	
	C.	$D + H_2(v = 0, 1)$	145	
×	D.	$F + H_2(v = 0)$	147	
	E.	F + HD(v = 0)	151	
	F.	$O(^3P) + H_2(v = 0, 1)$ and $O(^3P) + D_2(v = 0, 1)$	153	
VI.	Sun	nmary and Outlook	160	
VII.	Pos	stscript	163	
Ackn	owle	dgments	163	
Refer	eferences			

752 *1 **禁** 95 × 34 w Signature of the control of the co 53 XX 32 150 **(5)** 2: 26

■

THE THEORETICAL INVESTIGATION OF THE ELECTRON AFFINITY OF CHEMICAL COMPOUNDS

G. L. GUTSEV

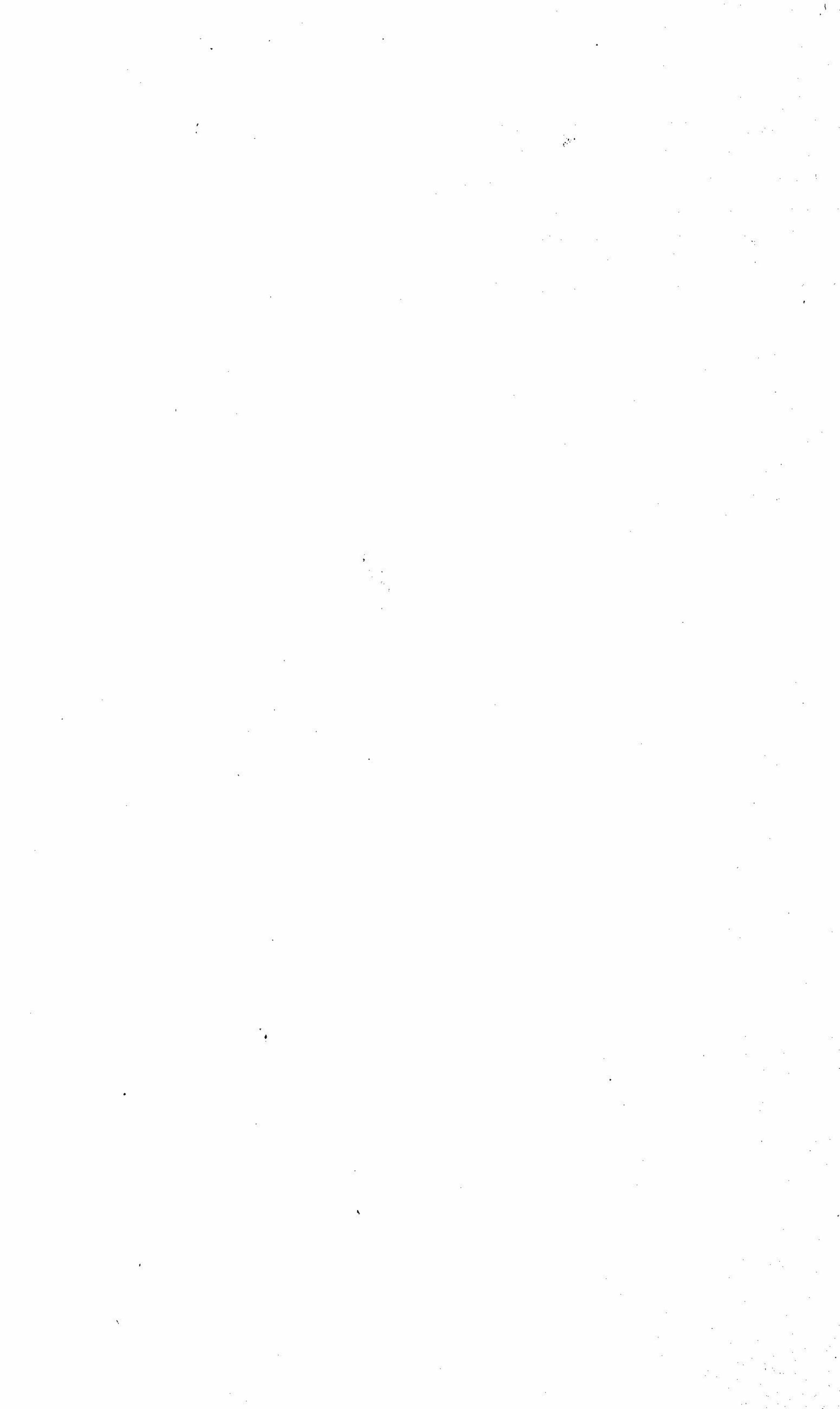
Institute of Chemical Physics (Branch), USSR Academy of Sciences, Chernogolovka, Moscow, USSR

and

A. I. BOLDYREV

Institute of Chemical Physics, USSR Academy of Sciences, Moscow, USSR

I.	Intr	oduction	169
II.	The	Theoretical Methods of EA Calculations	172
	A.	The Hartree-Fock-Roothaan Method	173
	B.	The EA Calculations with Correlation	180
	C.	X_{α} Methods	187
	D.	Comparison of Methods for EA Calculations	192
III.	The	Relationship Between EA and Electronic Structures of Molecules and Radicals	193
	A.	Systems with High EA Values	197
	B.	Superhalogens among the sp-Element Compounds	198
€ĉ	C.	Superhalogens among the Transition Metal Systems	200
	D.	A Search of Systems with Maximal Possible EAs	209
	E.	Peculiarities in the Chemical Properties of Superhalogens	212
	F.	Systems with Low IP Values	213
IV.	Con	clusions	216
Refe	rence	S Commence of the commence of	217



SCATTERING THEORY IN SUPERSPACE

C. GEORGE, F. MAYNÉ and I. PRIGOGINE*

Service de Chimie-Physique II, Université libre de Bruxelles, Brussels, Belgium

Prelim	inary		223
I.	Introdu	action	225
II.	Scatter	ing Theory	230
III.	Dynam	ics of Correlations, Subdynamics and Nonunitary Transformation Theory	233
IV.	Unitary	y Sectors of the Potential Scattering Problem	240
V.	The Sta	arunitary Sector (1, 1)	248
VI.	Physica	al Representation	256
VII.	The Bo	oltzmann Equation	259
VIII.	The Se	cond Law as a Selection Principle	261
IX.	Conclu	ding Remarks	265
Ackno	wledgm	ents	267
Appen	dix A.	Potential Scattering	267
Appen	dix B.	Scattering Theory	269
Appen	dix C.	Transition Operator and Transition Matrix	275
Appen	dix D.	Analytical Continuation	278
Appen	dix E.	More About the Sectors (1, 0) and (0, 1)	280
Appen	dix F.	The Regularization Procedure in Perturbation and Convolution Forms	284
Appen	dix G.	More About the Sector (1, 1)	290
Appen	dix H.	Diagonalization of the ${\mathcal H}$ Superoperator	294
Refere	nces		298

STATISTICAL PHYSICS OF POLYMER SOLUTIONS: CONFORMATION-SPACE RENORMALIZATION-GROUP APPROACH

YOSHITSUGU OONO

Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana Illinois

I.	Int	roduction	303			
	A.	General Introduction	303			
	В.	Problem	304			
	C.	Outline.	305			
II.	Cri	tical Survey of Representative Theories	306			
	A.	Partition Function	306			
	В.	(Bare) Perturbation Theory	310			
	C.	Mean-Field Theory	313			
	D.	Cumulative Effect of Interactions	316			
	E.	Naive Renormalization	319			
III.	Ou	tline of Renormalization-Group Approach	322			
*	A.	Phenomenology, Universality, and Minimal Models	322			
	B.	Renormalization-Group Equation	324			
	C.	Renormalized Perturbation Theory and ε-Expansion	327			
	D.	Fixed Points and Scaling Concepts	328			
IV.	Sta	tic Properties	330			
	A.	A. Density Distribution Function for the End-to-End Vector of the Self-				
		Avoiding Chain	331			
		1. Bare Perturbation	331			
		2. Renormalization	334			
		3. Renormalization of the Interaction Parameter	336			
		4. The Renormalization-Group Equation for $G(N, \mathbb{R})$	337			
	e	5. Functional Form of the Density Distribution Function	339			
		6. The Mean-Square End-to-End Distance	341			
		7. Normalized End-to-End Distance Distribution Function	343			
3	В.	Temperature Dependence	344			
		1. General Consideration	345			
		2. Functional Form Required by the Renormalization-Group Equation	346			

YOSHITSUGU OONO

		3.	Universal Form of the End-to-End Vector Distribution	348	
		4.	Weak Nonuniversality of Expansion Factor	350	
		5.	Another Route Connecting Gaussian and Self-Avoiding Limits.	351	
	C.	Co	ncentration Dependence	353	
		1.	Partition Function	354	
		2.	Calculation of the Partition Function	357	
		3.	Bare Perturbation Result for Osmotic Pressure	.360	
		4.	Renormalization of the Osmotic Pressure	362	
		5.	Renormalization-Group Equation for the Osmotic Pressure	363	
		6.	The Universal Form of the Osmotic Pressure	364	
*		7.	Calculation of the Correlation Length	365	
	D.		motopy Expansion	367	
V.			rt Phenomena	370	
9415020	A.		nsport Coefficients from Kirkwood-Riseman Theory, Especially [ŋ]	370	
		1.	Kirkwood-Riseman Scheme	371	
		2.	Dimensional Analysis	372	
	331	3.	Bare Perturbation Calculation of [n]	374	
		4.	Renormalization	377	
		5.	The Renormalization-Group Equation for [\eta]	378	
			Crossover Behavior of the Intrinsic Viscosity.	381	
	B.	5070.000	tical Consideration on the Description of Solution Dynamics	383	
	C.		l Dynamics Calculations	385	
	-		The Longest Relaxation Time for Dilute Solutions	385	
			The Initial Decay Rate of the Dynamical Scattering Factor	388	
VI.					
3	A.		mparison with Experiments—Dilute Solutions	389 390	
	701170	1.	What are the Predictions of Renormalization-Group Theory?	390	
	2	2.	Universal Ratios	391	
		3.	Asymptotic Values of Universal Ratios	394	
		4.	Approximate Universal Relations	395	
		5.	Slowness of Dynamical Crossover Behavior	399	
		6.	Static Scattering Factor S(k).	404	
	•0	3-1-1-1	Initial Decay Rate of the Dynamical Scattering Factor	404	
	В.	36500755	mparison with Experiments—Semidilute Solutions	406	
	C.		her Results by Renormalization-Group Theory	407	
			Test Chain in Semidilute Solutions	407	
			Rings, Stars, Polymers Interacting with Walls, etc.	410	
			Effect of Flow Fields	410	
VII.	Sun			411	
			n Proof.	413	
Ackn				414	
			A Sketch of Scaling Arguments	414	
			Feynman-Kac Formula.	416	
100 mm			The Singularity at $z = 0$	418	
7.0			Derivation of Eq. (162)	419	
			Integral in Eq. (210)	420	
			Calculation of $G(\mathbf{k}, x, y)$	421	
10000000			Necessary Equations for k-Integration	422	
			Derivation of Eq. (306)	423	
			Derivation of Eq. (312)	424	
		1.00			

	STATISTICAL PHYSICS OF POLYMER SOLUTIONS	303
Appendix J. References	Derivation of the Full-Diffusion Equation	425 429
Glossary of Symbols		435

ÿ.

090

*