

TAGGED-PARTICLE MOTION IN DENSE MEDIA: DYNAMICS BEYOND THE BOLTZMANN EQUATION By Thomas Keyes and Andrew J. Masters	1
On Invariance of Localized Hamiltonians under Feasible Elements of the Nuclear Permutation-Inversion Group By Grigory A. Natanson	55
COLLISIONAL DISSOCIATION AND CHEMICAL RELAXATION OF RUBIDIUM AND CESIUM HALIDE MOLECULES By Joseph N. Weber and R. Stephen Berry	127
THE VIRIAL THEOREM By Guilhem Marc and W. G. McMillan	209
AUTHOR INDEX	361
Subject Index	. 373

TAGGED-PARTICLE MOTION IN DENSE MEDIA: DYNAMICS BEYOND THE BOLTZMANN EQUATION

THOMAS KEYES

Department of Chemistry
Boston University
Boston, Massachusetts 02215

ANDREW J. MASTERS

Royal Signals and Radar Establishment Malvern, United Kingdom, WR14 3PS

1.	Introduction	
II.	Kinetic Theory	3
	A. Background	3
	B. Recent Work	15
III.	Mode Coupling	23
	A. Background	23
	B. Recent Work	30
IV.	Conclusions	51
Refe	erences	51

発 - 注:

ON INVARIANCE OF LOCALIZED HAMILTONIANS UNDER FEASIBLE ELEMENTS OF THE NUCLEAR PERMUTATION-INVERSION GROUP

GRIGORY A. NATANSON†

Department of Chemistry and the James Franck Institute
The University of Chicago
Chicago, Illinois 60637

I.	Equivalence of Identical Particles and Dynamical Symmetry Caused by It	55	
II.	. A Polyatomic Molecule as a Cluster in the Nuclear Configurational Space		
78	A. Hidden Symmetry of a Global Hamiltonian and Structural Degeneracy	\$1.	
	of Energy Levels	63	
	B. Molecular Structure as a Superposition of Born-Oppenheimer Wavefunction	ons 71	
III.	Molecular Systems with a Few Internal Degrees of Freedom	76	
	A. Symmetry Groups Generated by a Molecular Model	76	
	B. An Impurity Molecule Rotating in a Crystal Field	81	
	C. The Dynamical PI Group as an Invariance Group of the Hamiltonian	84	
	D. Hidden Symmetry of the Localized Hamiltonian	86	
IV.	Localized Hamiltonian as a Truncated Taylor Series in Vibrational Coordinates	88	
V.	Eliminating Momentum Couplings between Large- and Small-Amplitude Motio	ns 95	
VI.	Least-Squares Sets of External and Internal Variables	98	
VII.	Normal Vibrational Coordinates	102	
App	endix A	110	
App	endix B	115	
Refe	rences	118	

COLLISIONAL DISSOCIATION AND CHEMICAL RELAXATION OF RUBIDIUM AND CESIUM HALIDE MOLECULES

JOSEPH N. WEBER* AND R. STEPHEN BERRY

Department of Chemistry and the James Franck Institute
The University of Chicago
Chicago, Illinois 60637

I.	Introduction	128	
II.	Experimental Method		
	A. Velocity Measurement	129	
	B. Concentrations	129	
	C. Calculations of Equilibrium Concentrations	134	
III.	Kinetic Model	138	
IV.	Results: Observations and Arrhenius Graphs		
	A. Rate Coefficients	147	
	B. Arrhenius Graphs and Parameters	157	
V .	Discussion: Relation to Other Evaluations	178	
	A. Ionization of Alkalis by Electron Impact and Electron-Ion Recombination	tion 178	
	B. Collisional Detachment and Three-Body Attachment	182	
	C. Ion-Pair Formation and Neutralization	186	
	D. Ionic and Atomic Dissociation, Branching Ratios, and the Reverse	[1] [4] [4]	
	Recombination Reactions	189	
App	pendix: Statistical Analysis of the Data	201	
Def	Parancas	206	

^{*}Present address: Christina Laboratory, E. I. duPont de Nemours and Co., Inc., Wilmington, Delaware 19898.

THE VIRIAL THEOREM

GUILHEM MARC‡ AND W. G. McMILLAN

Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles, California 90024

I.	I. Introduction				
	A.	Mo	tivation	211	
	В.	B. Summary			
II.	General Theory			216	
	A.	. The Classical Virial Theorem			
		1.	The Virial Theorem from Newton's Second Law	216	
		2.	Separability of the Virial	218	
		3.	Virial of the Wall Forces	221	
			a. Uniform Pressure	222	
			b. Nonuniform Pressure	222	
		4.	Virial for a Homogeneous Potential Function	224	
		5 .	Tensor Generalizations	228	
		6.	Method of Moments	232	
		7.	Poisson Brackets and the Hypervirial Theorem	235	
		8.	Principle of Least Action	237	
		9.	Symmetry and the Conservation Laws	239	
	B .	The	e Quantum-Mechanical Virial Theorem	242	
		1.	Transition to Quantum Mechanics	242	
		2.	Scaling	245	
		3.	Commutators and the Hypervirial Theorem	247	
		4.	The Virial Theorem from the Schrödinger Equation	252	
		5 .	Generalized Current Density	255	
		6.	Energy-Derivative Theorem	257	
		7.	Virial Theorem under External Constraints	260	
			a. Rigid Molecule	261	
			b. Particle in a Box	262	
			c. Homogeneous Electron Gas	264	

[‡]Based on the Dissertation of Guilhem Marc for the degree of Doctor of Philosophy in Chemistry, University of California, Los Angeles, 1983.

C.	The Relativistic Virial Theorem	266			
	1. Classical Particle	267			
	2. Ensemble of Classical Particles in an Electromagnetic Field	269			
	3. Dirac Particle in an Electromagnetic Field	272			
Apı	plications	274			
-	The Virial Theorem as Qualitative Guide	274			
	1. Stability of Atoms	275			
	2. Stellar Masses	278			
	3. Cohesive Energy of Monovalent Metals	282			
В.	Equations of State	284			
	1. The Virial Equation of State	285			
	a. History, Importance, and Limitations	285			
	b. Connection with the Virial Theorem	286			
	2. Kinetic vs. Thermodynamic Pressure	289			
	3. Three- and Two-Dimensional Plasmas	291			
	a. Plasma Equation of State	291			
	b. Two-Dimensional Plasma	293			
	4. Solids Under Pressure	295			
C.	Hartree-Fock-Slater and Thomas-Fermi-Dirac Models	299			
	1. Self-Consistent Field and Local-Exchange Approximations	299			
	2. The Statistical Model	304			
	a. Generalities	304			
	b. Energy Components and Atomic Number Z	310			
	c. The Virial Theorem in Statistical Models	312			
D.	The Chemical Bond	319			
	1. The Born-Oppenheimer Approximation	319			
	2. Molecular Virial Theorem for Fixed Nuclei	321			
	3. Chemical Bonding and Virial Fragments	323			
	4. The Isotope Effect in Diatomic Molecules	326			
	a. Virial Theorem for Nuclear Motion	326			
	b. Hellmann-Feynman Theorem with Parametrized Reduced Mass	328			
	c. The Potential Energy of Diatomic Molecules	329			
	d. Harmonic-Oscillator Approximation	331			
	e. Discussion	332			
E.					
	1. Review of Recent Developments				
	2. Perturbation Theory Without Wavefunctions	334			
	a. Formulation of the Problem	335			
	b. The Anharmonic Oscillator	336			
	c. State of Progress	339			
	3. Sum Rule	339			
F.	Moments of the Fokker-Planck Equation				
	1. Brownian Motion				
	2. Langevin Equation				
	3. Sketch of the Derivation of the Fokker-Planck Equation	346			
	4. Moments of the Fokker-Planck Equation	347			
Ap	pendix	350			
Re	ferences	354			