		1 99			
	99				
74)					
			X 2		
					#4
			122		
	5%			9395	Oli

Quadratic Transport and Soluble Boltzmann Equations By M. R. Hoare	
THE STATISTICAL MECHANICS OF THE ELECTRICAL DOUBLE LAYER By Steven L. Carnie and Glenn M. Torrie	14]
KERR-EFFECT RELAXATION IN HIGH ELECTRIC FIELDS By Hiroshi Watanabe and Akio Morita	255
THE INTERNAL FIELD PROBLEM IN DEPOLARIZED LIGHT SCATTERING By Thomas Keyes and Branka M. Ladanyi	411
A Consistent Molecular Treatment of Dielectric Phenomena By Paul Madden and Daniel Kivelson	467
AUTHOR INDEX	567
Subject Index	577

(b) 器 32

**

QUADRATIC TRANSPORT AND SOLUBLE BOLTZMANN EQUATIONS

M. R. HOARE

Department of Physics, Bedford College Regent's Park, London, England

I.	Int	roduction	2
II.	Qua	adratic Transport Equations	4
	A.	Elementary Symmetries	9
	В.	Conservation Properties	11
	C.	Simplification of the Transport Equation	12
	D.	Closed System Relaxation of Oscillators	14
	E.	Collective Games	15
	F.	Equilibrium and Microscopic Reversibility	15
	G.	Entropy Production, the H Theorem, and Positivity	20
	H.	Linearization	23
	I.	Types of Exact Solutions	27
	J.	Moment Evolution Equations	29
	K.	Diffusion Approximations	40
III.	Sol	uble Stochastic Models	42
	A.	Two- and Three-State Models	42
	В.	Shuler's Model: Landau-Teller Oscillator Relaxation	46
	C.	The Scattering $K(y, x; u) = \text{const.}$ (Ernst-Hendriks VHP Model)	48
	D.	The Tjon-Wu Scattering $K(y, u) = u^{-1}$	51
	E.	The Discrete Scattering $\overline{K}(j, i; k) = (k+1)^{-1}$	56
	F.	The Diffuse Scattering $K(y; u) = W_{pp}(y, u)$ (Beta Distribution)	59
	G.	The Diffuse Scattering $\overline{K}(j;k) = W_{pp}(j,k)$ (Negative Hypergeometric	
		Distribution)	62
	H.	Persistent Scattering: The p-q Distributive Model	65
IV.	Mo	dels in Velocity Space	74
	A.	Velocity-to-Energy Transformations	75
	В.	The Kac Model	77
	C.	Maxwell Models and Pseudo-Maxwell Models	79
	D.	Nonisotropic Scattering	85
V.	Inte	gral Transform Methods	88
	A.	Fourier Transforms	89
	В.	Isotropic Velocity Distributions	90
	C.	Deterministic, Stochastic and "Maxwell" Models	92

M. R. HOARE

	D. Transform Properties and Soluble Models	96
	E. Ziff's Transformations	101
VI.	Conjectures and Refutations	105
	A. The Krook-Wu Conjecture: Universality of the Similarity Solution	106
	B. The McKean Conjecture: "Super H Theorems"	106
	C. Enhancement and Depletion Effects	107
	D. Singular and Anomalous Solutions	108
VII.	Other Quadratic Processes	112
	A. Aggregation-Fragmentation Processes	113
	B. Pure Aggregation Models	116
	C. Aggregation-Fragmentation Models	121
	D. Aggregation with Deposition	126
	E. Gelation Kinetics	126
VIII.	Conclusion	130
a dimento dalli	Appendix	131
	References	136

THE STATISTICAL MECHANICS OF THE ELECTRICAL DOUBLE LAYER

STEVEN L. CARNIE

Department of Chemistry
University of Toronto, Toronto, Ontario, Canada

GLENN M. TORRIE

Department of Mathematics and Computer Science Royal Military College, Kingston, Ontario, Canada

-	.		4.40
1.		roduction	142
II.	Fui	idamental Equations and Exact Conditions	144
	A.	The Hamiltonian	144
	В.	Distribution Functions and Electrostatic Potentials	148
	C.	Exact Equations	152
		1. The BBGY Hierarchy	152
		2. The Kirkwood Hierarchy	153
		3. Cluster Expansions and Density Functional Theory	156
	D.	Exact Conditions	159
III.	The	Point-Ion Model and Gouy-Chapman Theory	162
	A.	Gouy-Chapman Theory	162
	В.	Weak-Coupling Theory for the Point-Ion Model	169
IV.	Do	uble-Layer Theories for Primitive Model Electrolytes	176
	A.	Simplest Effects of Finite Ion Size	177
	В.	Modified Poisson-Boltzmann (MPB) Theory	179
	C.	Theories Based on the BBGY Equations	184
	D.	Hypernetted-Chain (HNC) Theories	186
V.	Co	nparison of Theory with Simulation: Symmetric Electrolytes	192
	A.	Monte Carlo Calculations	192
	В.	1:1 Aqueous Electrolytes	196
	C.	2:2 Aqueous and 1:1 Nonaqueous Electrolytes	209
VI.	Ela	borations on the Basic Model	216
	A.	The Surface: Discrete Charges and Image Forces	216
	B.	Asymmetric Electrolytes	224
		1. Charge Asymmetry	224
		2. Size Asymmetry	227

142

S. L. CARNIE AND G. M. TORRIE

VII.	Relate	d Models	229
VIII.			236
IX.	EASTERN TOTAL		239
Append	iix A.	Graphical Prescriptions of $\rho_{\alpha}(z_1)$ and $h_{\alpha\beta}(\mathbf{r}_1,\mathbf{r}_2)$	240
		Some Aspects of Computer Simulation of Double Layers	243
Referer			.246

Here the boundaries meet and all Contradictions exist side by side

Dostoyevsky, The Brothers Karamazov

KERR EFFECT RELAXATION IN HIGH ELECTRIC FIELDS

HIROSHI WATANABE AND AKIO MORITA

Department of Chemistry, College of Arts and Sciences
University of Tokyo
Komaba, Meguro-ku, Tokyo 153, Japan

I.	Inti	roduction	256
II.	Pre	vious Treatment of the Relaxation Processes of Electric Birefringence for the	Step-up
	and	Reversing Fields	264
III.	Pre	vious Treatment of Electric Birefringence for the Sinusoidal Electric Field	274
IV.	An	Exact Treatment of Kerr-Effect Relaxation in a Strong Unidirectional Field	278
	A.	Exact Calculation of $A_n(s)$ in the Case $g=0$	279
	В.	Exact Calculation of $A_n(s)$ in the Case $e=0$	281
	C.	Calculation of $A_2(s)$ in the General Case $e \neq 0$ and $g \neq 0$	282
		Calculation of $\langle P_2(\cos\theta)\rangle$ in the Limit as $\tau\to\infty$	284
		Analytical Expressions of the Relaxation Time of Kerr-Effect Buildup	for the
		Step-up Electric Field	287
V.	Tin	ne-Dependent Birefringence Following the Sudden Change of a Homog	geneous
	Ele	ctric Field	295
	A.	Expression of the Time Course of Electric Birefringence in the Expanded I	Form of
		a Matrix Equation	295
	B.	A Closed Form of the Matrix Representation of Birefringence Transients	300
		1. Buildup Processes	301
		2. Transients for the Reversing Fields	301
		3. Decay Processes	302
	C.	The Stationary State Value and the Areas	321
VI.	An	alytical and Numerical Calculations of Transient and Steady-State	Electric
	Bire	efringence in the Nonlinear Region upon the Sudden Application of a Time-	Varying
	Ele	ctric Field of Sufficient Strength	327
	A.	A General Treatment of the Electric Polarization and the Electric Birefi	ingence
		Caused by Extremely Low Time-Varying Electric Fields	327
		1. Continuous Reversing Square Pulses with a Period of 2T	329
		2. Exponentially Rising and Decaying Electric Fields	335
		3. The Sinusoidal Electric Field $E(t) = E_0 \cos \omega t$	339
	В.	Analytical Expression of the Nonlinear Kerr Effect for the Sinusoidal	Electric
		Field	343
	C	Numerical Calculations of the Birefringence in High Electric Fields	351

256

H. WATANABE AND A. MORITA

VII. Ker	r-Effect Relaxation Processes Caused by a Rapidly Rotating Field	359
VIII. The	ory of Translational Brownian Motion	367
IX. Rot	ational Brownian Motion of a Plane Rotator	373
X. Rot	ational Brownian Motion of a Rigid Body	382
XI. Elec	tric Birefringence in Infinitely High, Time-Varying Electric Fields	389
Appendix A	A. The Quantity Observed in Kerr-Effect Experiments	394
Appendix l	3. Calculation of the Laplace Transform of Eqs. (6.57) to (6.62)	399
Appendix (C. Random Walk	403
Appendix l	D. Gaussian Random Variables	406
Appendix I	E. Computer Simulation of Langevin's Equation	407
References		408

THE INTERNAL FIELD PROBLEM IN DEPOLARIZED LIGHT SCATTERING

THOMAS KEYES

Department of Chemistry Boston University Boston, MA 02215

BRANKA M. LADANYI

Department of Chemistry Colorado State University Fort Collins, CO 80523

I.	Introduction	412
	A. Ground Rules and Definitions	412
	B. Basic Theory	413
II.	The Internal Field Problem and the Low-Density Limit	417
III.	Historical Survey and the Einstein-Smoluchowski Theory	420
IV.	Einstein-Smoluchowski Theory for Depolarized Scattering	424
	A. General Considerations	424
	B. Formal Evaluation of \mathscr{L}	430
	C. The Depolarized Intensity	434
	D. Dielectric Cavity Models	436
	E. Two-Component Systems	441
V.	Microscopic Basis of the ES Theory	441
VI.	The Internal Field Problem in Light Scattering from Flexible Molecules	447
	A. Light Scattering from Dilute Gases of Flexible Molecules	448
	B. Light Scattering from Solutions of Flexible Molecules	453
VII.	Conclusion	463
	References	463

A CONSISTENT MOLECULAR TREATMENT OF DIELECTRIC PHENOMENA*

PAUL MADDEN†

Theoretical Physics Section
Royal Signals and Radar Establishment
Great Malvern, Worcs, United Kingdom WR 14 3PS

DANIEL KIVELSON

Department of Chemistry, University of California Los Angeles, CA 90024

I.	Introduction	468
II.	Relationship of Calculable Response Functions to Phenomenological Ones	470
III.	Molecular Expressions for the Response Function	474
IV.	Nonpolarizable (Rigid) Dipoles: The Dielectric Constant	479
V,.	Rigid Dipoles: The Frequency-Dependent Permittivity	485
VI.	Relationship between Dielectric and Single-Particle Relaxation Times:	
	Rotational Diffusion	490
VII.	Nondiffusional Motion	493
	A. Introduction	493
	B. "Three-Variable" Theory	494
	C. An Extended CMMC Theorem	497
VIII.	Polarizable Nonpolar Molecules	501
	A. General Development	501
	B. Calculation of Correction Terms	506
IX.	Polarizable Polar Molecules: The Zero-Frequency Permittivity	511
X	Polarizable Polar Molecules: Frequency-Dependent Permittivity	520

^{*}Supported in part by a NATO research grant and by the National Science Foundation Grant NSF CHE77-15387.

[†]Advanced Research Fellow of SERC.

P. MADDEN AND D. KIVELSON

XI.	Applications of Dynamical Theory	524
	A. Librations and Dipolarons	524
	B. Experimental Data and Model Calculations	529
	C. On the Observation of Dipolarons	534
	D. Are Three Variables Enough?	538
XII.	VV Light Scattering	544
XIII.	Summary	548
	Appendix A	552
	Appendix B	553
	Appendix C	558
	Appendix D	563
	References	564

