

STATISTICAL MECHANICS OF POLYMER SOLUTIONS AND POLYMER ADSORPTION By Stuart G. Whittington	1
THEORY OF COLLISION-INDUCED LINE SHAPES—ABSORPTION AND LIGHT SCATTERING AT LOW DENSITY By G. Birnbaum, B. Guillot, and S. Bratos	49
GENERALIZATIONS OF THE ENTROPY CONCEPT: PRINCIPLES, LIMITATIONS, AND PROSPECTS FOR APPLICATIONS By C. Alden Mead	113
SENSITIVITY ANALYSIS AND ITS ROLE IN QUANTUM SCATTERING THEORY By Larry Eno and Herschel Rabitz	177
METALLIC GLASSES By Sidney R. Nagel	227
AUTHOR INDEX	277
SUBJECT INDEX	285

STATISTICAL MECHANICS OF POLYMER SOLUTIONS AND POLYMER ADSORPTION

STUART G. WHITTINGTON

Department of Chemistry, University of Toronto, Toronto, Canada

1.	Introduction	1
II.	Polymer Solutions	5
	A. General	5
	B. Rigorous Results on Self-Avoiding Walks	6
	C. The Magnetic Analogy	14
	D. Universality	20
	E. Scaling Arguments and Concentration Regimes	25
II.	Polymers in Restricted Environments	28
	A. Polymers in Slits and Tubes	28
	B. The Half-Space Problem	35
	C. Polymer Adsorption at a Plane Surface	39
IV.	Discussion	44
	References	44

THEORY OF COLLISION-INDUCED LINE SHAPES—ABSORPTION AND LIGHT SCATTERING AT LOW DENSITY

G. BIRNBAUM

National Bureau of Standards Washington, D.C. 20234

and

B. GUILLOT and S. BRATOS

Université Pierre et Marie Curie Paris, France

I.	Inti	oduction	50		
II.	Ger	neral Relations in Collision-Induced Absorption	52		
III.	Collision-Induced Translational Absorption in Rare Gas Mixtures				
	A.	General Considerations	56		
	B.	Exact Quantum and Classical Calculations	58		
	C.	Approximate Dynamical Methods	63		
	D.	Model Correlation Functions	69		
IV.	Col	lision-Induced Absorption in Molecular Gases	71		
	A.	General Considerations	71		
	B .	Rotational-Translational Band Shapes	74		
	C.	Translational Shapes from Dynamical Models	79		
	D.	Models for the Spectral Density, Correlation Function, and			
		Memory Function	80		
	E.	Interference between Allowed and Induced Dipoles	84		
V.	Col	lision-Induced Light Scattering	84		
	A.	Comparison of Translational Absorption and Depolarized Light Scattering	84		
	B .	General Relations	86		
VI.	Lin	e Shapes in Collision-Induced Light Scattering	89		
	A.	Exact Quantum and Classical Calculations of the Translational Spectrum	89		
	В.	Approximate Dynamical Methods	99		

903:90-96					
50	~	DIDATE ATIM D	CITTIOT	ANTE	DDATOS
JU (J.	BIRNBAUM, B.	GUILLUI,	WIND 9.	DRAIUS

	C. Model Correlation and Memory Functions, Molecular Dynamic	s 102
	D. Collision-Induced Vibrational-Rotational Raman Spectra	106
VII.	Summarizing Remarks and Conclusions	
	References	109

GENERALIZATIONS OF THE ENTROPY CONCEPT: PRINCIPLES, LIMITATIONS, AND PROSPECTS FOR APPLICATIONS

C. ALDEN MEAD

Institut für Theoretische Physik, Rheinisch-Westfälische Technische Hochschule Aachen, 5100 Aachen, West Germany and

Chemistry Department, University of Minnesota, Minneapolis, Minnesota 55455§

1,	Int	roduction	114
II.	Fu	ndamental Properties of Mixing Character and Distance	117
	A.	Intuitive Considerations	117
	В.	Convex Functions and Bistochastic Matrices	119
	C.	Equivalent Definitions of Mixing Character	121
	D.	The Quantum Case	126
	E.	Connection with Time Development of Irreversible Processes	127
	F.	System in Contact with Bath; Mixing Distance	130
	G.	Comparison with the Concept of Mixing in Ergodic Theory	135
III.	Spe	ecial Properties of Entropy	136
	A.	Additivity and Subadditivity	136
	B .	Nonlinear Evolution Equation	139
	C.	Information Theoretic Interpretation; Jaynes Prescription	143
	D.	Conclusions	145
IV.	The	e η-Theorem	146
	A.	Preliminaries	147
	В.	Power Functions	148
	C.	Angle Functions	150
	D.	Error Incurred in Jaynes Prescription	154
	E.	Restrictions	155
V.	Exa	amples and Applications	157
	A.	Diffusion in Ideal Solution	157
	В.	Correlations	159
	C.	Systems with Two Degrees of Freedom	161
	D.	Chemical Reactions in Ideal Gases; An Example of Case (b)	166
VI.	Co	nclusion	168
Ack	nowl	edgments	168

[§]Present address.

114 C. A. MEAD

Appendix A: Discussion of Objections Raised by Lesche	
Appendix B: Mathematical Properties of the Model of a Ferromagnet	
Near Critical Point Discussed in Section V.C	171
References	173

SENSITIVITY ANALYSIS AND ITS ROLE IN QUANTUM SCATTERING THEORY

LARRY ENO AND HERSCHEL RABITZ

Department of Chemistry, Princeton University, Princeton, New Jersey 08544

I.	Introduction	177	
II.	Elementary Sensitivity Coefficients		
	A. Evaluation	180	
	a. Exact Dynamics	181	
	b. Approximate Dynamics	185	
	B. Applications	187	
	a. Potential Parameters	188	
	b. Asymptotic Parameters	194	
III.		199	
	A. Evaluation	199	
	B. Applications	201	
IV.	Feature Sensitivity Analysis	206	
V.	Global Parameter Scaling	212	
VI.	Observables as Real Data	217	
VII.	Conclusion	223	
9699	Acknowledgments	225	
	References	225	

METALLIC GLASSES

SIDNEY R. NAGEL

Department of Physics and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

I.	Introduction	227	
II.	Structure	231	
III.	Electronic Transport in Metallic Glasses		
	A. Resistivity	239	
	a. The Mooij Correlation in Glasses	241	
	b. High-Temperature Resistivity Behavior	243	
	c. Low-Temperature Resistivity in Ferromagnets	251	
	B. Thermoelectric Power	254	
	a. Nonmagnetic Glasses	254	
	b. Magnetic Glasses	256	
IV.	Photoemission Spectra and the Density of States	257	
V.	Optical Properties	262	
	Glass Formation and Stability	266	
VII.	Conclusions	270	
	References	271	