

1
3
17
43
55
85
133
153
183
185
237

COLLISION INDUCED INTERSYSTEM CROSSING	
By Karl F. Freed	291
COLLISIONAL EFFECTS IN ELECTRONIC RELAXATION	
By A. Tramer and A. Nitzan	337
ELECTRONIC TO VIBRATIONAL ENERGY TRANSFER FROM EXCITED HALOGEN ATOMS	
By Paul L. Houston	381
Section 5. Studies in Condensed Media	419
COHERENT OPTICAL TRANSIENT STUDIES OF DEPHASING AND RELAXATION IN ELECTRONIC TRANSITIONS OF LARGE MOLECULES IN THE CONDENSED PHASE	
By Douwe A. Wiersma	421
VIBRATIONAL POPULATION RELAXATION IN LIQUIDS	
By David W. Oxtoby	487
Experimental Studies of Nonradiative Processes in Low Temperature Matrices	
By V. E. Bondybey	521
PICOSECOND SPECTROSCOPY AND DYNAMICS OF ELECTRON RELAXATION PROCESSES IN LIQUIDS	15
By Geraldine A. Kenney-Wallace	535
STUDIES OF CHLOROPHYLL IN VITRO	•
By K. J. Kaufmann and M. R. Wasielewski	579
PROTON TRANSFER: A PRIMARY PICOSECOND EVENT	
By P. M. Rentzepis and P. F. Barbara	627
LASER STUDIES OF PROTON TRANSFER	85.
By D. Huppert, M. Gutman, and K. J. Kaufmann	643
Author Index	681
Subject Index	709

ENHANCEMENT OF CHEMICAL REACTIONS BY INFRARED LASERS

R. L. WOODIN AND A. KALDOR

Exxon Research and Engineering Company, Corporate Research Laboratories, Linden, New Jersey 07036

I.	Int	roduction	
II.	Vit	orational Enhancement of Bimolecular Reactions	2
	A.	Atom Plus Hydrogen Halide Reactions	•
	В.	Polyatomic Bimolecular Reactions	
	C.	Laser-Enhanced Reactions at High Pressure	10
	D.	Collisional Deactivation of Vibrationally Excited States	12
III.	Vit	orational Enhancement of Isomerization Reactions	13
IV.	Co	nclusion	14
Refe	renc	es	15

TWO-PHOTON EXCITATION AS A KINETIC TOOL: APPLICATION TO NITRIC OXIDE FLUORESCENCE QUENCHING

YEHUDA HAAS AND MICHA ASSCHER

Department of Physical Chemistry, The Hebrew University, Jerusalem, Israel

I.	Multiphoton versus One-Photon Spectroscopy			
II.	Exp	perimental Methods	19	
	Α.	The Need for High-Power Lasers	19	
	В.	Monitoring Two-Photon Absorption	20	
		1. Direct Attenuation of the Laser Beam	20	
		2. Detection by Thermal Effects	20	
		3. Detection by Fluorescence Excitation	21	
		4. Detection by Ionization	21	
		5. Other Nonlinear Techniques	21	
		6. Chemical Methods	22	
		7. Null Methods	22	
III.	Kir	etic Studies	22	
	A.	Motivation	22	
	В.	Excited States of Nitric Oxide	24	
	C.	Quenching Kinetics	24	
	D.	Quenching Mechanisms	26	
IV.	Res	ults	27	
	A.	NO Self-Quenching	27	
	В.	Quenching of NO Rydberg States by Other Molecules	31	
V.	Que	enching Mechanism of NO Rydberg States	34	
VI.	Sur	nmary	39	
Ack	nowl	edgments	39	
Refe	erenc	es	39	

INFRARED LASER-ENHANCED DIFFUSION CLOUD REACTIONS

MARK EYAL, URI AGAM, AND FREDERICK R. GRABINER

Department of Chemistry, Tel-Aviv University, Tel-Aviv, Israel

I.	Introduction	43
II.	Experimental	44
III.	Results	46
IV.	Discussion	48
Ack	knowledgment	54
Refe	ferences	54

CHEMICAL LASER KINETICS

A. BEN-SHAUL

Department of Physical Chemistry and Institute of Advanced Studies, The Hebrew University, Jerusalem, Israel

I.	Introduction	55
II.	Kinetics	57
	A. Rate Equations	57
	B. Kinetic Scheme	59
	C. Model vs Experiment	62
III.	Rotational Effects	65
	A. Rotational Equilibrium	65
	B. Rotational Nonequilibrium	70
IV.	Thermodynamics	72
	A. Lasing Criteria	72
*	B. Maximal Work and Constraints	75
	C. Time Dependence	77
IV.	Concluding Remarks	80
	References	81

LASER DIAGNOSTICS OF REACTION PRODUCT ENERGY DISTRIBUTIONS

A. BARONAVSKI, M. E. UMSTEAD, AND M. C. LIN

Chemical Diagnostics Branch, Chemistry Division, Naval Research Laboratory, Washington, D. C. 20375

I.	Introduction		
II.	II. Experimental Details		
	A. The CO Laser-Probing Technique	86	
	B. Laser-Induced Fluorescence Measurements	90	
III.	Results and Discussion	91	
	A. Photodissociation Reactions	91	
	1. Single-Photon Photodissociation	92	
	2. VUV Multiphoton Dissociation	106	
	B. E→V Energy Transfer Reactions Involving CO	111	
	C. Combustion-Related Reactions	116	
IV.	Concluding Remarks	126	
	References	127	

36 8.

DOPPLER SPECTROSCOPY OF PHOTOFRAGMENTS*

K. H. WELGE AND R. SCHMIEDL

Fakultät für Physik, Universität Bielefeld, Bielefeld, FRG

I.	Introduction		
II.	Sub	eject of Report	135
III.	Me	thod	136
IV.	Mu	ltiple-Photon Dissociation in Beam	138
	A.	Experimental	138
	В.	Results	139
		1. Doppler Measurements of $C_2(a^3\Pi_u)$ from C_2H_3CN	139
		2. Doppler Measurements of NH ₂ from CH ₃ NH ₂	140
		3. Speed Distribution of NH ₂	142
V.	One	e-Photon Dissociation of NO ₂	143
3	A.	Experimental	143
	B.	Results	145
		1. Intrafragment Energy Distribution	145
		2. Interfragment Doppler Recoil Experiments	149
	Ref	ferences	151

NONLINEAR OPTICS AND LASER SPECTROSCOPY IN THE VACUUM ULTRAVIOLET

STEPHEN C. WALLACE*

Department of Chemistry, University of Toronto, Toronto, Canada M5S 1A1

I.	Vacuum Ultraviolet Lasers—A Retrospective			
II.	Generation of Harmonic Radiation in the Vacuum Ultraviolet			
	A. Theory of Third-Order Nonlinear Optical Phenomena	160		
	B. Experimental Considerations	164		
	C. Strontium and Autoionizing States	165		
	D. Studies in Magnesium Vapor	167		
	E. Molecules versus Atoms	169		
	F. Higher Order Nonlinear Effects	171		
	G. Saturation Phenomena	172		
III.	Application to Chemical Physics	173		
IV.	Conclusion	178		
V.	Appendix	178		
-	References			

^{*}Alfred P. Sloan Foundation Fellow.

			₹ 6
			7%
			3 %
		160 160	· · · · · · · · · · · · · · · · · · ·

VIBRATIONAL ENERGY FLOW IN THE GROUND ELECTRONIC STATES OF POLYATOMIC MOLECULES

ERIC WEITZ*

Department of Chemistry, Northwestern University, Evanston, Illinois 60201

GEORGE FLYNN

Department of Chemistry and Columbia Radiation Laboratory, Columbia University, New York, New York 10027

I.	Inti	troduction and Scope		
II.	Ene	rgy	Transfer in Methane, Deuteromethanes, and Methyl Fluoride	187
	A.	CH	I_4 .	187
	B.	CI	$\mathbf{P_3}\mathbf{H}$.	190
	C.	CI) ₄	192
	D.	CH	I_2D_2	193
	E.	CH	I ₃ F.	198
		1.	Rare Gas Behavior of CH ₃ F Rates.	205
	59	2.	Behavior of CH ₃ F in the High-Excitation Region	205
	F.	Co	nclusions	206
III.	Tec	hnic	ues for Determining Dominant Energy-Transfer Mechanisms	208
	A.	Ge	neral Comments	208
	B.	Vil	orational Temperatures	209
		1.	Definitions	209
		2.	Intermode Collisional Coupling.	.210
		3.	Ladder-Climbing Effects	211
		4.	The Harmonic Oscillator Limit for Polyatomics	212
		5.	Calculations of Energy and Population Distributions for Metastable	
			Laser Pumped Polyatomics in the Harmonic Oscillator Limit	215
		6.	Summary of Results for Polyatomic Molecules in the Harmonic	
			Oscillator Limit	216
		7.	Experimental Techniques for Measuring Vibrational Temperatures	218

^{*}Alfred P. Sloan Fellow

186 E. WEITZ

		8.	Degenerate Mechanisms, "Catastrophic" Cyclic Paths, and the	
			Unique Path Assumption	220
		9.	Chemical Reactivity of Vibrationally Metastable Distributions,	
			Continuous Wave, and Discharge Pumping	222
	C.	Vil	orational Quanta Conservation	223
		1.	General Comments	223
		2.	Energy Conservation Conditions	223
		3.	Quantitative Results	224
		4.	Results, Extension to Pure Systems, and Limitations	226
	D.	Ki	netic Sensitivity Analysis and Rare Gas Engineering of Kinetic Rates	228
		1.	Sensitivity Analysis	228
		2.	Rare Gas Engineering	229
IV.	Col	lisio	nal Propensity Rules for Vibrational Energy Transfer	229
V.	Cor	ıclu	ding Remarks	231
	Ack	cnov	vledgments	232
	References			

COLLISION-INDUCED INTRAMOLECULAR ENERGY TRANSFER IN ELECTRONICALLY EXCITED POLYATOMIC MOLECULES

STUART A. RICE*

The Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

I.	Introduction		237
II.	Overview of Theoretical Development		
III.	Selected Experimental Data		245
	A.	Vibrational Energy Transfer	245
	B.	Rotational Energy Transfer	258
	C.	Enhancement of Vibrational Relaxation by Orbiting Resonances	263
IV.	501-20-40		270
Note	ote Added in Proof		274
Ack	ow	edgments	288
Refe			288

227

85 OF

25. 25.

COLLISION-INDUCED INTERSYSTEM CROSSING

KARL F. FREED

The James Franck Institute and The Department of Chemistry, The University of Chicago, Chicago, Illinois 60637

I.	Introduction	
II.	Basic Facets of Radiationless Transitions in Isolated Molecules	
	A. Description of the Molecular Model	300
類	B. The Small, Intermediate and Statistical Limits.	302
	C. Dephasing in an Isolated Molecule	308
69	D. Intramolecular Vibrational Relaxation	311
III.	Collision Induced Intersystem Crossing at Low Pressures	314
	A. Collision Dynamics	316
	B. Types of Collisional Events.	320
¥ 6	C. Collision-Induced Intersystem Crossing in Large Molecules	323
	D. Magnetic Field Effects on Collision Induced Intersystem Crossing Rates	325
IV.	Pressure Dependence of Collision Induced Intersystem Crossing	329
V.	Discussion	333
Refe	erences	334

COLLISIONAL EFFECTS IN ELECTRONIC RELAXATION

A. TRAMER

Laboratoire de Photophysique Moleculaire CNRS, Université Paris-Sud 91 405 Orsay, France

A. NITZAN

University of Tel-Aviv, Department of Chemistry Tel-Aviv, Israel

I.	Essential Features of the Collision-Induced Electronic Relaxation		338
r _{ive}	A.	General Remarks	338
(35)	B.	Phenomenological Description of Collisional Effects	341
II.	Mo	Model Treatment of the Collision-Induced Electronic Relaxation	
	A.	Outline	344
.65	B.	"Primary" Collision Effects	345
	C.	Time Evolution of the Collisionally Perturbed Molecule	348
	D.	Small-Molecule Weak-Coupling Case	350
30	E.	Intermediate-Size Molecules	357
	F.	Some Specific Comments	358
III.	Review and Analysis of Experimental Data		359
	A.	Reversibility of Collision-Induced Electronic Relaxation	360
	B.	Vibrational Relaxation by Reversible Electronic Relaxation	362
	C.	Dependence of Collisional Relaxation Rates on Intramolecular Parameters	363
12	D.	Role of Strongly Mixed States (Problem of "Gates")	366
944	E.	Dependence of Collisional Relaxation Rates on the Intermolecular Potential	368
IV.	New Problems and Perspectives		370
	A.	Electronic Relaxation in van der Waals Complexes	370
	B.	Electronic Relaxation of Photofragmentation Products	372
*	C.	Magnetic-Field Effects	373
V.	Final Conclusions		376
	Acknowledgments		377
	References		377

ELECTRONIC TO VIBRATIONAL ENERGY TRANSFER FROM EXCITED HALOGEN ATOMS

PAUL L. HOUSTON*

Department of Chemistry, Cornell University, Ithaca, New York
14853

I.	Introduction		
II.	Exp	perimental Techniques	384
	A.	Rate Constant Determinations: The Apparatus	384
	B.	Stimulated Emission Following E→V Transfer	386
III.	Rat	e Constant Determinations: The Kinetic Scheme	388
IV.	Experimental Results		395
	A.	$E \rightarrow V$ Transfer from Br ($^2P_{1/2}$)	395
		1. Hydrogen Fluoride	395
		2. Hydrogen Chloride	395
		3. Hydrogen Bromide	396
		4. Hydrogen	396
		5. Carbon Monoxide	397
		6. Nitric Oxide	398
		7. Carbon Dioxide	398
		8. Nitrous Oxide	399
		9. Carbon Disulfide and Carbon Oxysulfide.	399
		10. Water	399
		11. Hydrogen Cyanide	400
	B.	$E \rightarrow V$ Transfer from $I(^2P_{1/2})$	400
Ñ		1. Hydrogen Fluoride	400
		2. Hydrogen Chloride	401
		3. Hydrogen Bromide	401
		4. Hydrogen	402
		5. Nitric Oxide	404
		6. Carbon Monoxide	405
		7. Water	406
		8. Other Systems	406
	C.	Summary of Results and Their Correlations	407
V.	Discussion		409
	A.	Quantum-Mechanical Calculations	410
	B.	Long-Range Attractive Forces	411

^{*}Alfred P. Sloan Fellow.

P. L. HOUSTON

	C. Curve-Crossing Mechanisms	413
	D. Summary	415
VI.	Conclusion	
	Acknowledgments	416
	References	416

COHERENT OPTICAL TRANSIENT STUDIES OF DEPHASING AND RELAXATION IN ELECTRONIC TRANSITIONS OF LARGE MOLECULES IN THE CONDENSED PHASE

DOUWE A. WIERSMA

Picosecond Laser and Spectroscopy Laboratory of the Department of Physical Chemistry, State University, Nijenborgh 16, 9747 AG Groningen, The Netherlands

I.	Introduction	422
II.	Optical Coherence	
III.	Optical Coherence Effects	
	A. Photon Echo	425
	B. Optical Free Induction Decay	429
	C. Optical Nutation	430
	D. Hole-Burning	430
IV.	Coherent Effects and Optical Lineshape	430
V.	Hole-Burning in Optical Transitions	434
	A. Introduction	434
	B. A Density Matrix Description of Hole-Burning in a Three-L	evel System 435
	C. A Kinetic Description of Photochemical Hole-Burning	437
	D. Results	439
VI.	Photon Echoes in Organic Mixed Crystals	
	A. Introduction	444
	B. Pentacene in Mixed Crystals	446
	C. Vibronic Relaxation and Dephasing in Pentacene	453
VII.	Optical Nutation and Free Induction Decay	
	A. Introduction	457
	B. Theory	457
	C. Results	459
VIII.	Summary of the Results	461
IX.	Optical Dephasing and Lineshape.	
	A. Introduction	463
	B. Reduced Density Matrix	463
	C. The Mixed-Crystal Hamiltonian	464
	D. Optical Redfield Theory	467

D. A. WIERSMA

	E.	Optical Lineshape	469
	F.	Comparison with Other Lineshape Theories	470
	G.	Conclusions	471
X.	Photon Echoes in Multilevel Systems		472
	A.	Introduction	472
	B.	Triphenylmethyl in Triphenylamine	473
	C.	Anomalous Stimulated Photon Echo	477
	D.	Photon Echoes in the ${}^3P_0 \leftarrow {}^3H_4$ Transition of Pr^{3+} in LaF ₃	479
	E.	Optical Free Induction Decay and Optical Nutation in a Multilevel System	481
Ackno	wled	gments	481
Appen	dix		482
Refere	nces		482

VIBRATIONAL POPULATION RELAXATION IN LIQUIDS

DAVID W. OXTOBY*

The Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

I.	Inti	487	
II.	Theories for Vibrational Relaxation.		
	A.	Isolated Binary Collision Model.	489
	B.	Perturbation Theory	491
	C.	Is the Binary Collision Model Valid?	494
	D.	Cell Models	496
	E.	Hydrodynamic Models	497
	F.	Superposition Approximations.	499
	G.	Green's Function Methods	502
	H.	Molecular Dynamics Simulations	503
	I.	Relation to Solid-and Gas-Phase Theories	505
III.	Exp	507	
	A.	Ultrasonic Absorption Studies	507
	B.	Laser Studies of Simple Liquids	508
	C.	Laser Studies of Simple Liquid Mixtures	509
	D.	Picosecond Vibrational Relaxation Experiments	511
IV.	No	n-Markovian Effects on Vibrational Relaxation	513
Ack	nowl	edgments	517
Refe	erenc	es	517

50) (7) 60 60 26 ¥2 \$Q

EXPERIMENTAL STUDIES OF NONRADIATIVE PROCESSES IN LOW TEMPERATURE MATRICES

V. E. BONDYBEY

Bell Laboratories, Murray Hill, New Jersey 07974

I.	Introduction	521
II.	Multiphonon Vibrational Relaxation	522
III.	Guest Rotation as the Energy Acceptor	526
IV.	Vibrational Energy Transfer Processes	528
V.	Electronic Relaxation Processes	529
VI.	Host Dependence of the Nonradiative Relaxation	530
VII.	Summary	532
Ackı	nowledgment	532
Refe	rences	532

PICOSECOND SPECTROSCOPY AND DYNAMICS OF ELECTRON RELAXATION PROCESSES IN LIQUIDS

GERALDINE A. KENNEY-WALLACE*

Department of Chemistry, University of Toronto, Toronto, Canada M5S 1A1

I.	Spe	ectroscopy of Electrons in Liquids	536
II.	Exp	.540	
	A. Mechanisms for Electron Generation in Liquids		541
	B.	Experimental Techniques	542
	C.	Laser Saturation Spectroscopy	.546
III.	Ele	ctron Relaxation in Pure Liquids	547
	A.	Electrons in Alcohols	547
	В.	Cluster Model of Electron Solvation	550
	C.	Interlude on Molecular Motion in Liquids	552
IV.	Ele	ctron Localization in Dilute Polar Fluids	555
	A.	Experimental Results	555
	B.	Dynamical Structures in Low-Density Liquids	.558
	C.	Mechanisms for Electron Solvation in Dilute Fluids	561
V.	Pic	562	
	A.	Photophysics of Electrons in Liquids	564
	В.	Laser-Induced Electron Transfer	564
Ack	nowl	ledgments	569
App	endi	X	569
D	.=~=		571

STUDIES OF CHLOROPHYLL IN VITRO

K. J. KAUFMANN*

Department of Chemistry, University of Illinois, Urbana, Illinois 61801

and

M. R. WASIELEWSKI

Argonne National Laboratory, Chemistry Division, Argonne, Illinois 60439

I.	Int	roduction	580
II.	Primary Processes in Photosynthesis		
	A.	Green Plants	581
	В.	Photosynthetic Bacteria	584
III.	Chl	orophyll in Vitro	586
		Aggregation of Chlorophyll a in Vitro	587
	В.	Photochemistry of Chlorophyll a and Bacteriochlorophyll a in Vitro	589
	C.	The ESR Linewidth of the Cation of Chlorophyll a in Vivo and in Vitro	590
	D.	Models for the Photoactive Dimer	591
	E.	Generation of in Vitro Dimers	593
	F.	Covalently Linked Dimers	594
IV.		ne Resolved Studies of Chlorophyll a Dimers	598
	A.		598
	В.	Models for the Reaction Center	599
	C.	Electron-Transfer Reactions in Cyclophanes	606
	D.	Excited Singlet State Properties of Chlorophyll Dimers	611
		Triplet Dynamics of the Pyrochlorophyll a Dimer	622
V.		nclusion	623
35	2	edgments	623
	erenc		623

^{*}Alfred P. Sloan Fellow.

PROTON TRANSFER: A PRIMARY PICOSECOND EVENT

P. M. RENTZEPIS AND P. F. BARBARA*

Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974

I.	Proton Transfer in Rhodopsin	631
II.	Primary Processes in Rhodopsin	632
III.	Proton Tunneling	637
IV.	Models for Proton Transfer	639
R efe	erences	642

LASER STUDIES OF PROTON TRANSFER

D. HUPPERT

Department of Chemistry, Tel Aviv University, Ramat Aviv, Israel

M. GUTMAN

Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel and

K. J. KAUFMANN*

Department of Chemistry, University of Illinois, Urbana, Illinois

i.	Introduction	643
I.	Excited-State Proton Transfer	645
II.	Intramolecular Proton Transfer	650
V.	Intermolecular Proton Transfer	667
V.	Solvent Cage Effect	673
VI.	Generation of a pH Jump	674
VII.	Summary	677
Ackn	nowledgments	677
	rences	677

E. WEITZ

		8.	Degenerate Mechanisms, "Catastrophic" Cyclic Paths, and the	
			Unique Path Assumption	220
		9.	Chemical Reactivity of Vibrationally Metastable Distributions,	
			Continuous Wave, and Discharge Pumping	222
	C.	Vi	brational Quanta Conservation	223
		1.	General Comments	223
		2.	Energy Conservation Conditions	223
		3.	Quantitative Results	224
		4.	Results, Extension to Pure Systems, and Limitations	226
	D.	Ki	netic Sensitivity Analysis and Rare Gas Engineering of Kinetic Rates	228
		1.	Sensitivity Analysis	228
		2.	Rare Gas Engineering	229
IV.	Col	lisio	nal Propensity Rules for Vibrational Energy Transfer	229
V.	Concluding Remarks			
	Acknowledgments			232
	References			