5• • %C ¥ 82° ₹**9** \$6

COLLISION-INDUCED SCATTERING OF LIGHT AND THE DIATOM POLARIZABILITIES by Lothar Frommhold	
THE ONSET OF CHAOTIC MOTION IN DYNAMICAL SYSTEMS by Michael Tabor	7 3
THERMODYNAMIC ASPECTS OF THE QUANTUM-MECHANICAL MEASUREMENT PROCESS by Ronnie Kosloff	153
Passage from an Initial Unstable State to a Final Stable State by Masuo Suzuki	195
THEORY OF THE LIQUID-VAPOR INTERFACE by Myung S. Jhon, John S. Dahler, and Rashmi C. Desai	279
STATISTICAL THERMODYNAMICS OF PROTEINS AND PROTEIN DENATURATION by Akira Ikegami	363
AUTHOR INDEX	415
Subject Index	425

COLLISION-INDUCED SCATTERING OF LIGHT AND THE DIATOM POLARIZABILITIES

LOTHAR FROMMHOLD

Department of Physics, University of Texas, Austin, Texas

CONTENTS

I.	Int	roduction	2
II.	The	Polarizability of the Diatom	
	A.	Classical Treatment	3
	B.	Ab initio Calculations	. 7
	C.	Other Computational Results	11
	D.	Measurement of the Trace	.12
	E.	Measurement of the Anisotropy	16
	F.	Remarks	18
		1. Frequency Dependence	18
		2. Range	19
		3. Models	19
		4. Nonlinear Response	20
		5. Three-Body Contributions	20
	G.	Tentative Summary	22
III.	Bin	ary Collision-Induced Raman Scattering	
	A.	Experimental Arrangements	23
	B.	Absolute Intensities (Calibration)	24
	C.	Wave-mechanical Theory of the Lineshape	27
	D.	Classical Theory of the Lineshape	33
	E.	Remarks Concerning the Lineshape Calculations	36
	F.	Moments of Spectral Distributions	37
IV.	Dia	tom Polarizability Data	
	A.	Results for Helium	39
		1. Summary	46
	В.	Results for Neon	46
	C.	Results for Argon	51
	D.	Results for Krypton and Xenon	62
	E.	Results for Selected Molecular Gases	66
V.	Con	nclusion	68
	Acl	knowledgments	69
	Ref	erences and Notes	69

This work was made possible through the support of the Robert A. Welch Foundation and the Joint Services, Electronics Program.

THE ONSET OF CHAOTIC MOTION IN DYNAMICAL SYSTEMS

MICHAEL TABOR

Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California

I.	Introduction	73
II.	Regular and Irregular Motion	75
	A. Surface of Section	81
	B. Separation of Trajectories	82
	C. Spectral Properties	83
III.	Exponential Separation of Trajectories	87
IV.	Overlapping Resonances	92
V.	Closed Orbit Methods	105
VI.	Correlation Function Methods	113
VII.	Regular and Irregular Regimes	
	in Quantum Mechanics	119
	A. Eigenvalue-Related Properties	121
	B. Eigenvector-Related Properties	125
	Appendix A	141
	Appendix B	145
	Acknowledgments	147
	References	147

THERMODYNAMIC ASPECTS OF THE QUANTUM-MECHANICAL MEASURING PROCESS

RONNIE KOSLOFF

The James Franck Institute, The University of Chicago, Chicago, Illinois

I.	. Introduction		153
II.	Cla	ssification of the Measurement Processes	155
	A.	The Mutual Information Functional	159
	B.	The Relative Mutual Information	160
	C.	The Capacity Functional	160
	D.	The Measurement and the Second Law of Thermodynamics	163
III.	The	e Quantum-Mechanical Measurement Model	165
	A.	The Mechanical Model	165
	B.	The Definitions of the States of the Systems S and M	166
	C.	The Measuring Apparatus	167
	D.	Dynamical Considerations	168
	E.	Nondestructive Measurement	169
	F.	Destructive Measurements	178
		1. Example A	179
		2. Example B	184
	G.	The Measurement Chain and Repeated Measurements	186
IV.	Dis	cussion	188
	Ap	pendix A	189
	Ap	pendix B	190
	Acl	knowledgments	192
	Ref	ferences	192

98 数 数 数 39 X2 ∯ 26 ei 50 50

PASSAGE FROM AN INITIAL UNSTABLE STATE TO A FINAL STABLE STATE

MASUO SUZUKI

Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo

I.	Introduction	196
II.	Ω-Expansion and Anomalous Fluctuation Theorem Near the Unstable	
	Point	198
	A. Ω-Expansion	198
	B. Anomalous Fluctuation Theorem and Fluctuation Intensity Relation	200
III.	Dynamic Molecular Field Theory in Langevin's Equation (or	
	Nonlinear Brownian Motion) and the Fokker-Planck Equation	203
	A. Dynamic Molecular Field Theory in Langevin's Equation	203
	B. Self-Consistent Treatment in the Fokker-Planck Equation	207
IV.	Most Dominant Terms in the Ω-Expansion and Scaling Property	208
V.	Scaling Theory of Nonlinear Brownian Motion	211
	A. Scaling Theory—Time-Independent Nonlinear Transformation	211
	B. Alternative Formulation of the Scaling Theory	215
	C. Extended Scaling Theory—Time-Dependent Transformation	215
	D. A simple Scaling Property in the Critical Case	217
VI.	General Scaling Theory	219
	A. General Scaling Idea	219
	B. Scaling Theory Based on a Nonlinear Transformation	219
	C. Scaling Theory Based on a Connection Procedure	224
	D. Operational Formulation and Haake's Theory	227
	E. Simple Example	229
VII.	Relation among the Extensivity, Ω-Expansion, and Scaling Theory	231
	A. The Extensivity and Scaling Theory	231
	B. The Ω-Expansion and Scaling Theory	232
ΠII.	Relation between Langevin's Equation and Fokker-Planck Equation with	
	Arbitrary Diffusion	233
IX.	Unified Treatment of Transient Phenomena Near the Instability Point	235
	A. General Formulation	235
	B. Relation to Other Methods	236
	C. Simple Approximation for the Fluctuating Part $z(t)$	237
	D. Time-Dependent Integral Transformation	238
	F. Stochastic Fokker-Planck Equation	239

MASUO SUZUKI

X.	Path Integral Formulation of the Fokker-Planck Equation	246	
	A. Transformation to Hermitian Form	246	
	B. Path Integral Formulation	247	
XI.	The WKB Method and Scaling Property	250	
XII.	Extension of the Scaling Theory to Time-Dependent		
	Ginzburg-Landau Model Systems	252	
XIII.			
	A. General Formulation	253	
	B. A Simple Example	254	
	C. Monte Carlo Method for Langevin's Equation	255	
XIV.	Variational Principles with Applications to Transient Phenomena	257	
	A. Variational Principles in Nonequilibrium	257	
	B. Application of the Variational Principle to Relaxation		
	Processes in Stochastic Systems	260	
	C. Rate Equation method	262	
	D. Validity of the Present Approximation	265	
XV.	Nonequilibrium Phase Transition and Critical Slowing Down	266	
XVI	Some Applications	269	
	A. Superradiance	269	
	B. Nucleon Transport in Nonlinear Systems	271	
	C. Extension of the Scaling Treatment to Multiplicative		
	Stochastic Processes	271	
XVII.	Conclusion and Discussion	273	
	Appendix A Borel Summation	274	
	Appendix B Proof of (5.21)	275	
	Acknowledgments	276	
23	References	276	

		5%
5%		

THEORY OF THE LIQUID-VAPOR INTERFACE

MYUNG S. JHON^(a) AND JOHN S. DAHLER

Departments of Chemical Engineering and Chemistry, University of Minnesota, Minneapolis, Minnesota

and

RASHMI C. DESAI

Department of Physics, University of Toronto, Toronto, Ontario, Canada

CONTENTS

I.	Int	roduction	280
II.	Equ	uilibrium	281
	A.	Thermodynamics	281
	В.	Molecular Theories of Surface Tension	285
		1. Potential Form	287
		2. Density Functional Formulas for Surface Tension	290
		3. Correlation Function Form of the Surface Tension	295
		4. Concluding Remarks	302
III.	Dy	namics of the Liquid-Vapor Interface	304
	A.	Hydrodynamic Theory of Capillary Waves	304
	B.	Generalized Hydrodynamics of a Two-phase System	310
		1. Broken Symmetry and Lifetimes of Dynamic Variables	310
		2. Surface Waves	317
IV.	Kir	netic Theory of Inhomogeneous Fluids	326
	A.	Formal Structure of the Theory	326
	B.	Approximate Projection Operators and Models for the	
		Density Profile	329
	C.	Approximate Kinetic Equations	332
		1. Mean-Field Approximation (Collisionless Kinetic Equation)	334
		2. Fokker-Planck Approximation	335
		3. Modified BGK Model	338
	D.	Dispersion of Surface Waves	340
	App	pendix A: Correlation Function Formalism	344

(a) Permanent address: Department of Chemical Engineering, Carnegie-Mellon University, Pittsburgh, PA, 15213

STATISTICAL THERMODYNAMICS OF PROTEINS AND PROTEIN DENATURATION

AKIRA IKEGAMI

The Institute of Physical and Chemical Research, Hirosawa, Wako-shi, Saitama, Japan

I.	Introduction		364
II.	Protein Structure a	nd Model	365
	A. The Nature of	Protein Structure	365
26	B. Statistical The	rmodynamic Model	366
III.	Free Energy and T	hermal Effects on Structural States	368
45%	A. Free Energy		368
	B. Thermal Dena	turation	369
	C. Fluctuations		375
IV.	Interaction and Str	ructural States	375
	A. Interaction wi	th Small Molecules	375
	1. Nonspecifi	c Binding and Denaturation	376
	2. Specific Bir	ading	377
	B. Polymerization	n of Proteins	378
95	C. Allosteric Effe	ect	380
V.	Water Structure ar	d Hydrophobic Bonds	383
	A. Free Energy of	f Hydrophobic Bonds	383
統	B. Water Structu	re and Denaturants	385
	C. Denaturation	Induced by High Pressure	390
VI.	Numerical Analysi	s of Thermal Denaturation	391
	A. Methods		391
	1. Specific He	at of Denaturation	391
	2. Least-Squa	res Method	393
	B. Thermodynan	ic Parameters of Globular Proteins	394
	1. Number of	Secondary Bonds	394
	2. Bond Ener	EY	395
	3. Cooperativ	e Energy	396
	4. Chain Entr	ору	396
	5. Hydrophol	picity	397
	(-1)	of Protein Molecules and the Model	397

AKIRA IKEGAMI

VII.	Dy	namics	398
	A.	Dynamic Aspects of the Protein Structure.	398
	B.	Stochastic Theory	399
		1. Master Equation.	399
		2. Two Relaxation Processes	400
	C.	Kinetics of Protein Denaturation	403
		1. Relaxation Times and Molecular Parameters	403
		2. Simulations of Temperature-Jump Experiments	407
VIII.	Con	ncluding Remarks	.410
Refere	nces		412