

CONTENTS

CONTINUUM OPTICAL OSCILLATOR-STRENGTH MEASUREMENTS BY ELECTRON	
Spectroscopy in the Gas Phase	
By C. E. Brion and A. Hamnett	2
Role of Excited States in Ion-Neutral Collisions	
By T. O. Tiernan and C. Lifshitz	82
ELECTRONIC EXCITED STATES OF SELECTED ATMOSPHERIC SYSTEMS	
By H. H. Michels	225
COLLISIONAL ENERGY-TRANSFER SPECTROSCOPY WITH LASER-EXCITED ATOMS IN CROSSED ATOM BEAMS: A NEW METHOD FOR INVESTIGATING THE QUENCHING OF ELECTRONICALLY EXCITED ATOMS BY MOLECULES	
By I. V. Hertel	341
SPONTANEOUS IONIZATION IN SLOW COLLISIONS	
By A. Niehaus	399
SCATTERING OF NOBLE-GAS METASTABLE ATOMS IN MOLECULAR BEAMS	X 6 8 (2) F (2) -
By H. Haberland, Y. T. Lee, and P. E. Siska	487

1	INTRODUCTION	. 3
	A Oscillator Strengths and Electron Spectroscopy	. 3
	B Energy Transfer in Electron and Photon Experiments	5
	C Scope of This Review	8
11	THEORETICAL BACKGROUND	9
	A Introduction	9
	B Molecular Processes	12
	C Born Approximation	13
	D Derivation of f(0) from Electron-impact Measurements	17
	E Continuum Effects and (e, 2e) Coincidence Experiments	20
Ш	CALCULATION OF OSCILLATOR STRENGTHS	21
١٧	EXPERIMENTAL CONSIDERATIONS	24
	A Electron Analyzers and Transmission Efficiency	24
	B Electron Detectors and Signal Processing	33
	C Coincidence Methods	34
	D Absolute Oscillator Strengths	38
٧	EXPERIMENTAL MEASUREMENTS	41
	A Introduction	41
	B The Noble Gases	41
	C Hydrogen	50
	D Nitrogen and Carbon Monoxide	54
	E Methane	69
	F Other Molecules	72
VI	CONCLUSIONS	72

I	EXPERIMENTAL TECHNIQUES A Formation of Excited Ions and Determination of	84
	Internal-energy Distributions	84
	B Excitation of Neutral Reactants	108
	C Methods for Studying Excited Ion-Neutral Interactions	108
II	INTERACTIONS OF EXCITED IONS WITH NEUTRALS	120
	A Reactive Scattering	126
	B Non-reactive Scattering—Energy Transfer	145
III	REACTIONS OF IONS WITH EXCITED NEUTRALS	161
IV	EXCITED PRODUCTS FROM ION-NEUTRALS COLLISIONS (ELECTRONIC, VIBRATIONAL, AND ROTATIONAL	
	EXCITATION)	163
	A Chemiluminescent Reactions	165
V	COLLISION MECHANISMS AND THEORETICAL	
: 211 &	IMPLICATIONS	196
	A General Effects of Internal Excitation	196
	B Theoretical Treatment of Energy Partitioning	199
	C Calculations of Energy States, Correlation Diagrams,	
	and Potential Surfaces	201
	D Quasiclassical and Collinear Quantum-mechanical	
	Trajectory Calculations	205

I. INTRODUCTION		*3		227
II. ELECTRONIC ST	RUCTURE CA	LCUL	ATIONS	228
A. Electronic Sta	tes and Wave	function	ons	229
B. Born-Oppenh	eimer Separat	ion		231
C. Variational Mo	ethods			232
D. Potential-ener	gy Curves and	Surfa	ces	239
III. ELECTRONIC S	STRUCTURE	AND	POTENTIAL-ENERGY	
CURVES				240
A. Nitrogen Mole	cule			241
B. Oxygen Molec	ule			265
C. Nitric Oxide N	lolecule			288
D. O ₂ lon				301
E. NO ⁺ Ion				318

I	INTRODUCTION	343
II	EXPERIMENTAL TECHNIQUES FOR STUDYING QUENCHING PROCESSES IN GASEOUS MIXTURES	346
HI	THEORETICAL QUENCHING MODELS	351
IV	CROSSED-BEAM EXPERIMENTS WITH LASER-EXCITED SODIUM ATOMS A General Aspects B Kinematics C Scattering Signal D Laser Optical Pumping of a Sodium-atom Beam E Experimental Setup	358 358 362 364 365 367
	DISCUSSION OF THE ENERGY-TRANSFER SPECTRA FOR Na(3 ² P _{3/2}) QUENCHING BY SIMPLE MOLECULES A Diatomic Molecules N ₂ , CO, H ₂ , and D ₂ B Comparison of Experiments with Statistical State Populations C Linearly Forced Harmonic Oscillator Model D A More Complicated Case: E to E-V-R Transfer in Na* Quenching by O ₂ E Triatomic Molecules CO ₂ and N ₂ O F Larger Polyatomic Molecules	368 369 376 377 379
VI	POLARIZATION STUDIES IN QUENCHING PROCESSES FROM LASER-EXCITED Na*(3p) A A Simple Example: e + Na*(3p)→e + Na(3s) 1 General Aspects 2 Linearly Polarized Light 3 Circular Polarization B Polarization Effects in Quenching of Na(3p) by Simple Molecules 1 Difference to Electron-scattering Processes 2 Experimental Results 3 Interpretation	380 380 384 385 385 387 389
VII	OTHER BEAM EXPERIMENTS RELATED TO QUENCHING OF ALKALI RESONANCE RADIATION	391
VIII	CONCLUSION	393

1	introduction	401
11	Penning Ionization—Simple Systems	402
	A Theoretical Background	403
	B Experimental Results and Their Evaluation	420
111	Penning Ionization—Complications	460
	A Atomic Targets	460
	B Molecular Targets	463
١٧	Other Spontaneous Ionization Mechanisms	472
	A True Associative ionization	472
	B Spontaneous Ionization by Electron Transfer	475

