Molecular Properties Observed and Computed By L. Engelbrecht and Juergen Hinze	1
GENERALIZED LANGEVIN EQUATIONS AND MANY-BODY PROBLEMS IN CHEMICAL DYNAMICS By S. A. Adelman	143
Experimental and Theoretical Studies of Rototranslational Correlation Functions By Myron Evans, Gareth Evans, and Russell Davies	255
On A Theoretical Description of Solvated Electrons By A. M. Brodsky and A. V. Tsarevsky	483
NATURAL CHIROPTICAL SPECTROSCOPY: THEORY AND COMPUTATIONS By Aage E. Hansen and Thomas D. Bouman	545
AUTHOR INDEX	645
Subject Index	659

MOLECULAR PROPERTIES OBSERVED AND COMPUTED

L. ENGELBRECHT AND JUERGEN HINZE

Fakultät für Chemie Universität Bielefeld Bielefeld, Germany

I.	Introd	luction	1
II.	Adiabatic Separation		
III.	The E	lectronic Equation	5
IV.	Symn	etry—Internal Coordinates	. 10
V.	The E	quation for Nuclear Motion	19
VI.	Spectr	roscopic Constants	24
VII.	Outline of the Theoretical Method		
VIII.	Effect	ive Operators and Effective Constants	43
IX.	Comp	utation of Molecular Properties	103
Appen	dix 1.	The Molecular Hamiltonian	109
Appen	dix 2.	Coupling and Recoupling Coefficients	121
Appen	dix 3.	Relations between Real and Complex Notation Used Herein	124
Appen	dix 4.	List of Symbols	130
Refere	nces		137

GENERALIZED LANGEVIN EQUATIONS AND MANY-BODY PROBLEMS IN CHEMICAL DYNAMICS

S. A. ADELMAN*

Department of Chemistry
Purdue University
West Lafayette, Indiana

I.	Introduction	143
II.	Theory of Generalized Brownian Motion	145
III.	Gas-Solid Collisions: A Case Study in Many-Body Chemical Dynamics	219
	endix 1	240
	endix 2	244
	endix 3	245
	endix 4. Gaussian Probability Distribution Functions	246
	endix 5	250
	TOTICOS	251

EXPERIMENTAL AND THEORETICAL STUDIES OF ROTOTRANSLATIONAL CORRELATION FUNCTIONS

MYRON EVANS AND GARETH EVANS

Department of Chemistry
University College of Wales
Aberystwyth, Wales

RUSSELL DAVIES

Department of Applied Mathematics
University College of Wales
Aberystwyth, Wales

1.	General Introduction. Theoretical and Experimental Background	259
II.	Evaluation of Models of Fluid-State Molecular Dynamics	337
III.	Machine Simulations of Rotational and Translational Correlation Functions	400
IV.	Induced Zero-THz Absorptions and Rotation/Translation of Molecules	444
Refe	erences	478

ON A THEORETICAL DESCRIPTION OF SOLVATED ELECTRONS

A. M. BRODSKY AND A. V. TSAREVSKY

Institute of Electrochemistry
Academy of the Sciences of the U.S.S.R.
Leninsky prospekt, 31,
Moscow, V-71, U.S.S.R.

I.	Introduction	483
II.	Theoretical Models of the Structure and Optical Spectra of Solvated Electrons	486
III.	Transport Properties	507
IV.	Analysis of Optical Spectra of Solvated Electrons with the Help of Nonmodel	
	Relationships	.514
V.	Determination of the Thermodynamic Characteristics of Solvated Electrons	535
VI.	Conclusions	537
App	endix	538
Refe	erences	540

NATURAL CHIROPTICAL SPECTROSCOPY: THEORY AND COMPUTATIONS

AAGE E. HANSEN

Department of Physical Chemistry
H. C. Ørsted Institute
University of Copenhagen
Copenhagen, Denmark

THOMAS D. BOUMAN

Department of Chemistry
Southern Illinois University
Edwardsville, Illinois

546
548
340
4
555
**
575
581

	C.	Molecular Excitons	
		1. Helical Polymers	
		2. Dimeric Systems	
VI.	Other Chiroptical Phenomena		59:
	A. Circularly Polarized Luminescence		
	B.	Vibrational Circular Dichroism	· č
	C.	Magnetic Circular Dichroism	
VII.	Computation of Electronic Transition Moments		60
	A.	State Approach	
	B.	Excitation Approach; Random Phase Approximation	
	C.	Random Phase Approximation for Molecular Excitons	
	D.	Remarks on Computation	
VIII.	Computed Chiroptical Properties		620
	A.	Chiral Chromophores	· ·
	B.	Achiral Chromophores	
	C.	Coupled Chromophore Systems	
	D.	Comments	
References			630

