

WORK FOR OBSERVATIONS AND STOCHASTIC PROCESSES IN QUANTUM MECHANICS	
H. Primas and U. Müller-Herold	1
IRREVERSIBLE THERMODYNAMICS FOR QUANTUM SYSTEMS WEAKLY COUPLED TO THERMAL RESERVOIRS	
Herbert Spohn and Joel L. Lebowitz	109
SOLVABLE MODELS FOR UNSTABLE STATES IN QUANTUM PHYSICS A. P. Grecos	143
ASPECTS OF KINETIC THEORY R. Balescu and P. Résibois	173
KINETIC THEORY OF PLASMAS Yu. L. Klimontovich	193
HOW DOES INFORMATION ORIGINATE? PRINCIPLES OF	
BIOLOGICAL SELF-ORGANIZATION Manfred Eigen	211
PATTERN FORMATION IN REACTING AND DIFFUSING SYSTEMS G. Nicolis, T. Erneux, and M. Herschkowitz-Kaufman	263
Instability and Far-from-Equilibrium States of Chemically Reacting Systems	
P. Hanusse, John Ross, and P. Ortoleva	317
TEMPORAL, SPATIAL, AND FUNCTIONAL ORDER IN REGULATED BIOCHEMICAL AND CELLULAR SYSTEMS	
B. Hess, A. Goldbeter, and R. Lefever	363
ELECTRIC FIELDS AND SELF-COHERENT PATTERNS AND STRUCTURES IN CHEMICAL SYSTEMS: LARGE-SCALE EFFECTS	
AND BIOLOGICAL IMPLICATIONS A. D. Nazarea	415
AUTHOR INDEX	451
SUBJECT INDEX	463

岩 89 (0)

QUANTUM-MECHANICAL SYSTEM THEORY: A UNIFYING FRAMEWORK FOR OBSERVATIONS AND STOCHASTIC PROCESSES IN QUANTUM MECHANICS

H. PRIMAS and U. MÜLLER-HEROLD

Laboratory of Physical Chemistry
Swiss Federal Institute of Technology
Zurich, Switzerland

I.	Quantum-Mechanical System Theory Versus Traditional Quantum Mechanics	1
II.	The Logical and Conceptual Structure of Generalized Quantum Mechanics of	
	Single Systems	8
III.	The Hilbert-Space Model of Generalized Quantum Mechanics	20
IV.	Theory of Observations in Quantum Mechanics	51
V.	Dynamics of the Classical Part of a Quantum System	66
VI.	Classifications of the Directly Perceptible Processes of Quantal Systems	90
Ref	erences	102

XX

82 22 50 91 32 50

¥i 120

IRREVERSIBLE THERMODYNAMICS FOR QUANTUM SYSTEMS WEAKLY COUPLED TO THERMAL RESERVOIRS

HERBERT SPOHN*

Belfer Graduate School of Science Yeshiva University New York, N.Y.

JOEL L. LEBOWITZ†

Service de Physique Théorique CEN Saclay Gif-sur-Yvette, France

i.	Introduction	109
II.	The Microscopic Model	111
III.	The Weak Coupling Limit	118
IV.	Detailed Balance and the KMS Condition	123
V.	Entropy Production	127
VI.	Approach to Stationarity	133
VII.	Onsager Relations	134
VIII.	Principle of Minimal Entropy Production	137
Refere	ences	140

SOLVABLE MODELS FOR UNSTABLE STATES IN QUANTUM PHYSICS

A. P. GRECOS

Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium

I.	Introduction	143
II.	Some Simple Quantum Systems	146
III.	Spectral Properties of Friedrichs-Type Models	153
IV.	Time-Dependent Problems	160
V.	Concluding Remarks	167
Refe	erences	168

ASPECTS OF KINETIC THEORY

R. BALESCU and P. RÉSIBOIS

Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium

I.	Introduction	173
II.	The Generalized Kinetic Equation	176
III.	Applications of the General Theory	181
Ref	erences	190

湯 80 39<u>.</u> ×. 29 ** 39 43 \$6 E 550 39

KINETIC THEORY OF PLASMAS

YU. L. KLIMONTOVICH

Moscow State University, Moscow, USSR

I.	Kinetic Theory of Plasmas	193
II.	Kinetic Equations for Ideal and Nonideal Plasmas	197
III.		10000.000 - AT
	Equation for a Nonideal Plasma	199
IV.	Kinetic Theory of Fluctuations in a Gas and a Plasma	202
V.	The Kinetic Equation for a Partly Ionized Plasma with Inelastic Processes Taken	25770
	into Account	206
Refe	erences	208

HOW DOES INFORMATION ORIGINATE? PRINCIPLES OF BIOLOGICAL SELF-ORGANIZATION*

MANFRED EIGEN

Ĭ.	Introduction	211
II.	Principles of Material Self-Organization	215
	Quantitative Treatment of the Darwinian System	229
	The Informational Aspect	236
	The Hypercycle as an Ordering Principle	245
VI.		252
	Conclusions	256
	rences	261

PATTERN FORMATION IN REACTING AND DIFFUSING SYSTEMS

G. NICOLIS, T. ERNEUX, and M. HERSCHKOWITZ-KAUFMAN

Faculté des Sciences de l'Université Libre de Bruxelles, Brussels, Belgium

I.	Deterministic Analysis	265
	Stochastic Aspects of Self-Organization	297
	ferences	314

INSTABILITY AND FAR-FROM-EQUILIBRIUM STATES OF CHEMICALLY REACTING SYSTEMS

P. HANUSSE and JOHN ROSS

Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts

P. ORTOLEVA

Department of Chemistry Indiana University Bloomington, Indiana

I.	Introduction	317
II.	Uniform Systems	318
III.	Nonuniform Systems	334
IV.	Localized Chemical Instabilities	350
Refe	erences	357

35 36 被 @1

災

8

TEMPORAL, SPATIAL, AND FUNCTIONAL ORDER IN REGULATED BIOCHEMICAL AND CELLULAR SYSTEMS

B. HESS

Max Planck-Institut für Ernährungsphysiologie Dortmund, FRG

A. GOLDBETER R. LEFEVER

Faculté des Sciences, Université Libre de Bruxelles, Brussels, Belgium

I.	Introduction	363
II.	Glycolytic Oscillations	367
III.	The Cyclic-AMP Signaling System in Dictyostelium discoideum	383
IV.	Cell-Mediated Immune Surveillance Against Cancer	393
V.	Concluding Remarks	407
Refe	erences	400

ELECTRIC FIELDS AND SELF-COHERENT PATTERNS AND STRUCTURES IN CHEMICAL SYSTEMS: LARGE-SCALE EFFECTS AND BIOLOGICAL IMPLICATIONS

A. D. NAZAREA*

Center for Statistical Mechanics and Thermodynamics
University of Texas at Austin
Austin, Texas

I,	Introduc	ction								415
II.	First-Order Dynamics of Combined Reactive and Charge Fluctuations When								en	
	Nonlinear Chemical Reactions Couple to Ionic Drift and Anisotropic Diffusion									418
III.	Electric	Field E	ffects of	1 Soft	Mode	and	Hard	Mode	Instabilities Due	to
Combined Reactive and Charge Fluctuations									422	
IV.	. Biophysical Implications of the Theory									
Appendix 1. Experimental Model Systems							433			
Appe	endix 2.	Experim	ental Pr	otocol						434
App	endix 3.	Calculat	tion of I	ield S	trengths	Pres	erving	the Su	im of Spectral Mul	ti-
	plicities of the Zero-Field Operator								435	
Appendix 4.		Further Remarks on the Field Induction of Instabilities								437
Appendix 5.		Paradigms and Perspectives								439
Refe	rences									447