

Mobilities of Charge Carriers in Superfluid Helium By K. W. Schwarz	1
Intermolecular Forces and Crystal Structures for D ₂ , N ₂ , O ₂ , F ₂ , and CO ₂ By Taro Kihara and Akio Koide	51
Cooperative Conformational Kinetics of Synthetic and Biological Chain Molecules By Roger Cerf	73
THE ELECTRODYNAMICS OF ATOMS AND MOLECULES By R. G. Woolley	153
Spectral Line Shapes in Gases in the Binary-Collision Approximation By A . Ben-Reuven	235
Time-Reversal Invariance, Representations for Scattering Wave Functions, Symmetry of the Scattering Matrix, and Differential Cross-Sections By Donald G. Truhlar, C. Alden Mead, and Maynard A. Brandt	295
Transition State Stabilization Energy as a Measure of Chemical Reactivity By M. V. Basilevsky	345
The Thermodynamics of Evolving Chemical Systems and the Approach to Equilibrium By Dominic G. B. Edelen	399
Author Index	443
Subject Index	453

MOBILITIES OF CHARGE CARRIERS IN SUPERFLUID HELIUM

K. W. SCHWARZ

The Department of Physics and The James Franck Institute, The University of Chicago, Chicago, Illinois

I.	Introduction	1
	A. Early History	1
	B. Charged Probes in Superfluid Helium	3
	C. Some Recent Developments	7
II.	Structure of the Charge Carriers	9
	A. The Positive Carrier	10
	B. The Negative Carrier	13
	C. Experimental Evidence	16
III.	The Transport Problem	19
	A. Qualitative Aspects	19
	B. Formal Aspects	. 23
IV.	³ He-Limited Mobilities	28
	A. Experimental Results	28
	B. Theory of ³ He Scattering	30
V.	Phonon-Limited Mobilities	32
	A. Experimental Results	32
	B. Theory of Phonon Scattering	34
VI.	Roton-Limited Mobilities	39
	A. Experimental Results	39
	B. Theory of Roton Scattering	41
Ackı	nowledgments	. 46
Note	es and References	46

INTERMOLECULAR FORCES AND CRYSTAL STRUCTURES FOR D₂, N₂, O₂, F₂, AND CO₂

TARO KIHARA AND AKIO KOIDE

Department of Physics, Faculty of Science, University of Tokyo, Tokyo, Japan

I.	Introduction	51
II.	Preliminaries	52
	A. Core Potential	52
	B. Electrostatic Quadrupolar Interactions	54
III.	Van der Waals Attraction	56
	A. Potential of the London Dispersion Force	56
	B. The Role of Electrostatic Polarizabilities	59
	C. Effects of Octopolar Induction	60
	D. Determination of the Constant W_0	62
IV.	Intermolecular Potentials and Crystal Structures	65
	A. Carbon Dioxide	65
	B. Deuterium and Nitrogen	67
	C. Oxygen and Fluorine	69
V.	Conclusion	70
Refe	rences	71

COOPERATIVE CONFORMATIONAL KINETICS OF SYNTHETIC AND BIOLOGICAL CHAIN MOLECULES

ROGER CERF

Laboratoire d'Acoustique Moléculaire,*
Université Louis Pasteur
Strasbourg, France

I.	Introduction		
II.	Kinetics of	the Linear Ising Lattice; Selected Applications to	
	Biopolymer	Dynamics.	80
	A. Infinite	Chain; The Four Relaxation Times.	
	B. Relaxat	ion Amplitudes; Fluctuations of the Number of	
	Uninter	rupted Sequences.	87
	C. Sequent	tial Processes; Oligopeptides and Oligonucleotides;	
	Protein	Unfolding and Refolding	98
	D. Append	lix: A Two-State Non-Arrhenius Model.	115
III.	Dynamics o	f Linear Chain Molecules: A Discussion of Pending	
	Problems.		121
	A. Stateme	ent of Problems.	121
	B. Some C	haracteristics of Local Movements.	126
	C. Conseq	uences for Slow Modes; Comparison with Experiments.	136
IV.	_	Remarks and Acknowledgments.	147
7001 APPR 7001 APPR	rences.		148

THE ELECTRODYNAMICS OF ATOMS AND MOLECULES

R. G. WOOLLEY

Trinity Hall Cambridge CB2 1TJ, England

I.	Introduction	. 153
II.	Classical Electromagnetism: The Maxwell-Lorentz Theory	161
	A. The Maxwell Equations	161
	B. The Lorentz Force Law	. 165
III.	Degenerate Lagrangians and the Canonical Formalism	169
	A. The Euler-Lagrange Equation	169
	B. Lagrangian Degeneracy	170
IV.	The Canonical Description of the Radiation Field	173
X.	A. The Hamiltonian	173
	B. The Equations of Motion	179
	C. The Constants of the Motion	183
V.	The Electrodynamics of Charged Particles	187
	A. The Hamiltonian	187
	B. The Equations of Motion	191
	C. The Field Due to a Moving Charge	194
	D. Self-Interactions and Renormalization: Classical and	
	Quantum Theories	199
VI.	The Electrodynamics of Atoms and Molecules	210
	A. The Coulomb Gauge Theory	210
	B. Electrodynamics Without Potentials	213
Appe	endix A On Integrals Involving the Polarization Fields	228
	I. Matrix Elements	228
	II. The Fourier Transform of $\langle 1S \mathbf{P}(\mathbf{x}) 2P\rangle$.229
Ackı	nowledgments	231
Refe	rences	231

32 32 2000年

SPECTRAL LINE SHAPES IN GASES IN THE BINARY-COLLISION APPROXIMATION

A. BEN-REUVEN*

Department of Chemistry,
Massachusetts Institute of Technology,
Cambridge, Massachusetts

I.	Introduction	236
II.	Units and Notation	239
III.	Linear Response	241
IV.	Green's Functions	245
V.	Double-Space Formalism	249
VI.	Projection Operators	255
VII.	Binary-Collision Approximation	260
VIII.	Self-Frequency Matrix	264
	A. General Expressions	264
	B. Diagonal Elements	266
	C. Analyticity	268
	D. Off-Diagonal Elements	270
	E. Transient Effects	272
	F. Gas Mixtures	274
IX.	Special Cases	275
	A. Impact Approximation	275
	B. Velocity Dependence	279
	C. Line Wings	284
	D. Statistical Broadening	287
•S _S S _S	E. Collision-Induced Spectra	290
Ackno	wledgments	291
Refere	ences	292

9682577539		200
IV.	Scattering Theory	325
	A. Symmetry of the S Matrix	325
	B. Reciprocity Theorem and Discussion	326
	C. Detailed Balance	330
V.	Applications	330
	A. Blatt and Biedenharn; Huby	331
	B. Percival and Seaton; Smith	333
	C. Lane and Thomas	334
	D. Arthurs and Dalgarno; Micha	335
	E. Davison	335
	F. Alder and Winther Phase Conventions	336
	G. Summary	336
Appe	endix A	337
-	endix B	338
650000	endix C	341
	s and References	341

TIME-REVERSAL INVARIANCE, REPRESENTATIONS FOR SCATTERING WAVEFUNCTIONS, SYMMETRY OF THE SCATTERING MATRIX, AND DIFFERENTIAL CROSS-SECTIONS*

DONALD G. TRUHLAR, C. ALDEN MEAD, AND MAYNARD A. BRANDT

Department of Chemistry, University of Minnesota, Minneapolis, Minnesota

I.	Introduction			
II.	Total-Angular-Momentum Representations			
III.	Tin	ne Reversal	298	
	A.	Symmetry Operators	299	
	B.	Antiunitary Nature of the Time-Reversal Operator	301	
	C.	Properties of Antiunitary Operators	303	
		1. General	303	
		2. Involutional Antiunitary Operators	304	
		3. Eigenstates of Involutional Antiunitary Operators	306	
	D.	Properties of the Time-Reversal Operator	308	
		1. Explicit Form	308	
		2. Kramers Degeneracy	311	
	E.	Minimization of the Number of Class II (\hat{T}) Variables in the		
		Complete Set of Commuting Variables	312	
	F.	Phase Conventions in Total-Angular-Momentum Representations	314	
		1. Preliminaries	314	
		2. Normal Phase Conventions	316	
		3. Angular Momentum Addition Using Normal Phase Conventions		
		and Real Clebsch-Gordan Coefficients	321	
		4 Nonnormal Phase Conventions	324	

^{*}Supported in part by the National Science Foundation through grant GP-28684, by the Alfred P. Sloan Foundation through a research fellowship to one of the authors (D.G.T.), and by the Graduate School of the University of Minnesota.

IV.	Sca	ttering Theory	325
	A.	Symmetry of the S Matrix	325
	В.	Reciprocity Theorem and Discussion	326
	C.	Detailed Balance	330
V.	Ap	plications	330
		Blatt and Biedenharn; Huby	331
	B.	Percival and Seaton; Smith	333
	C.	Lane and Thomas	334
	D.	Arthurs and Dalgarno; Micha	335
	E.	Davison	335
	F.	Alder and Winther Phase Conventions	336
		Summary	336
Appe			337
Appe			338
Appe			341
		d References	'341

TRANSITION STATE STABILIZATION ENERGY AS A MEASURE OF CHEMICAL REACTIVITY

M. V. BASILEVSKY

Karpov Institute of Physical Chemistry Moscow, USSR

I.	Introduction				
II.	Interaction Energy				
	A. Perturbation Theory	349			
	B. The Energy Contributions	353			
	C. Interaction of Two Hydrogen Molecules as an Example	354			
III.	Estimations of Interaction Energy in the Framework of				
	Semiempirical Theories	356			
	A. The NDO Approximation for Two-Electron Interactions	357			
	B. Competition of Coulomb and Exchange Effects in the				
	Intramolecular and Intermolecular Exchange Regions	358			
	C. Application to π-Electron Systems	359			
	D. NDO Procedures for All Valence Electrons	360			
IV.	The Stabilization Energy in π-Systems	361			
	A. Qualitative Discussion of Interactions of Various π-Systems	362			
	B. Potential Surfaces for Addition Reactions	363			
	C. Derivation of the SE Method and the Hammond Rule	366			
	D. Radical Addition Reactions	367			
V.	Reaction Centers Involving σ-Bonds: Hyperconjugation of the				
	Nonsymmetrical Groups				
	A. Generalization of the Hyperconjugation Theory	369			
	B. Radical Abstraction of Hydrogen Atoms	370			
	C. General Case	373			
VI	Cyclic Reaction Centers	373			
	A. Selection Rules Based on the SE Method	374			
	B. Stability of Symmetric Transition States	377			
	C. Additional Remarks	379			
VII.	Correlations in Organic Chemistry	380			
	A. General Approach	381			
	B. Correlation Between Stabilization and Localization Energies:				
	The Structure Functions	382			
	C Derivation of Correlations Between RIs	384			

THE THERMODYNAMICS OF EVOLVING CHEMICAL SYSTEMS AND THE APPROACH TO EQUILIBRIUM

DOMINIC G. B. EDELEN

Center for the Application of Mathematics
Lehigh University
Bethlehem, Pennsylvania

I.	Intro	400	
II.	Nota	402	
III.	The	405	
	A.	Conservation of Total Mass	405
	В.	Balance of Constituent Mass	406
	C.	Balance of Linear Momentum	407
	D.	Balance of Momentum	407
	E.	Balance of Energy	408
	F.	Balance of Entropy	408
	G.	Entropy-Production Inequality	410
IV.	General Solution of the Entropy-Production Inequality		411
	A.	Statement of the Problem	411
	В.	The Basic Decomposition Theorem	412
	C.	Reciprocity Relations and Dissipation Potentials	413
	D.	Characterization of Solutions	415
V.	The Energetic Function		416
	A.	Definition of the Energetic Function	416
	B.	Equivalent Forms	418
	C.	Equilibrium States and Lower Bounds	424
	D.	Properties of the Equilibrium State	426
VI.	Large	429	
	A.	The External Environment and Bounds on dR/dt	429
	В.	Asymptotic Approach to Equilibrium States	431
	C.	Asymptotic Stability	434
	D.	Concluding Remarks	435
Appendix. An Alternative Asymptotic Stability Theorem			
Acknowledgments			441