STABILITY AND SELF-ORGANIZATION IN OPEN SYSTEMS By I. Prigogine and R. Lefever	1
Dissipative Instabilities, Structure, and evolution By G. Nicolis	29
STUDIES IN DISSIPATIVE PHENOMENA WITH BIOLOGICAL APPLICATIONS By P. Ortoleva and J. Ross	49
FINITE FLUCTUATIONS, NONLINEAR THERMODYNAMICS, AND FAR-FROM- EQUILIBRIUM TRANSITIONS BETWEEN MULTIPLE STEADY STATES By Jack S. Turner	63
THE HAMILTON-JACOBI-EQUATION APPROACH TO FLUCTUATION PHENOMENA By Kazuo Kitahara	85
FUNCTIONAL ORGANIZATION IN ARTIFICIAL ENZYME MEMBRANES: ACCOMPLISHMENTS AND PROSPECTS By Daniel Thomas	113
THE GLOBAL STABILITY OF PREY-PREDATOR SYSTEMS WITH SECOND-ORDER DISSIPATION By Charles Walter	125
A SHORT REMARK ABOUT VARIOUS DISSIPATIVE STRUCTURES By E. Kahrig and H. Besserdich	133
Spatiotemporal Organization in Chemical and Cellular Systems By B. Hess, A. Boiteux, H. Busse, and G. Gerisch	137
THEORETICAL MODELS FOR BACTERIAL MOTION AND CHEMOTAXIS By Jean-Pierre Boon	169
THE MOLECULAR VARIATIONS OF CYTOCHROME c AS A FUNCTION OF THE EVOLUTION SPECIES By E. Margoliash	191
THE DEVELOPMENT PATTERN: MECHANISMS BASED ON POSITIONAL INFORMATION By L. Wolpert	253
A Membrane Model for Polar Transport and Gradient Formation By B. C. Goodwin	269
PERIODICAL SIGNALS IN THE SPATIAL DIFFERENTIATION OF PLANT CELLS By B. Novak	281

X	CONTENTS
STRUCTURE AND TRANSPORT IN BIOMEMBRANES By Liana Bolis	301
Ion Transport Through Artificial Lipid Membranes By P. Läuger	309
Physiochemical Problems in Excitable Membranes By Y. Kobatake	319
Excitability and Ionic Selectivity, Common Properties of Many Lipidic Derivatives By A. M. Monnier	Y 341
THERMODYNAMIC CONSIDERATIONS OF THE EXCITABLE MEMBRANES BEHAVIOR By M. Delmotte, J. Julien, J. Charlemagne, and J. Chanu	343
Membrane Excitation By R. Lefever and J. L. Deneubourg	349
Author Index	375

SUBJECT INDEX

STABILITY AND SELF-ORGANIZATION IN OPEN SYSTEMS

I. PRIGOGINE* AND R. LEFEVER

Université Libre de Bruxelles, Faculté des Sciences, Bruxelles, Belgium

I.	Introduction	1	
II.	Definitions of Stability, Lyapounov Functions, and Structural Instabilities		
	A. Stability in the Sense of Lyapounov and Orbital Stability	4	
	B. Lyapounov Functions	5	
	C. Linear Stability	5	
	D. Stability in Respect to "Small Parameters"	7	
	E. Structural Stability	9	
III.	Nonequilibrium Thermodynamics—Irreversibility as a Symmetry-Breaking		
	Process	12	
IV.	Thermodynamic Stability Theory	14	
	A. Stability Condition of the Equilibrium State	15	
	B. The Linear Range	16	
	C. The Nonlinear Range	17	
V.	Succession of Instabilities. The Martinez Model	18	
VI.	Entropy Production and Evolutionary Feedback	19	
20	A. Simple Linear Chemical Networks	22	
	B. Steady State Entropy Production (s.e.p.) of a Simple Catalytic Model	24	
VII.	Physical Basis of Self-Organization	25	
	References	27	

DISSIPATIVE INSTABILITIES, STRUCTURE, AND EVOLUTION

G. NICOLIS

Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium

I.	Introduction	29
II.	Themodynamics of Irreversible Processes. Dissipative Structures.	30
III.	Model Dissipative Systems	32
IV.	Stochastic and Deterministic Aspects of Evolution	41
V.	Biological Illustrations	42
	A. Regulatory Processes	42
	B. Excitable Systems	43
	C. The Problem of Development	43
	D. Evolution	44
VI.	Concluding remarks	44
	References	46

•)1 80 26 (6) 18 8 额 € (9) · 100 903

STUDIES IN DISSIPATIVE PHENOMENA WITH BIOLOGICAL APPLICATIONS

P. ORTOLEVA AND J. ROSS

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

I.	Introduction	49
II.	Reacting Systems Bounded by Membranes of Variable Permeability	49
III.	Localized Instabilities	51
IV.	Symmetry Breaking in Mitosis	54
V.	Nonlinear Waves in Oscillatory Chemical Reactions	55
VI.	Inhomogeneous Noise in Biochemically Oscillating Systems	58
II.	Illuminated Systems	58
	Acknowledgments	60
	References	60

FINITE FLUCTUATIONS, NONLINEAR THERMODYNAMICS, AND FAR-FROM-EQUILIBRIUM TRANSITIONS BETWEEN MULTIPLE STEADY STATES

JACK S. TURNER

Center for Statistical Mechanics and Thermodynamics, The University of Texas at Austin, Austin, Texas

Abs	tract	63
I.	Introduction	63
II.		67
III.		68
IV.		71
V.		72
VI.	Discussion	79
4 <i>5</i> 75.5	Deferences	82

¥:意 24.5 S9 \$55 555

THE HAMILTON-JACOBI-EQUATION APPROACH TO FLUCTUATION PHENOMENA

KAZUO KITAHARA

Chimie Physique II, Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium

I. Introduction	85
II. Formulation	86
II. One-Variable Cases	91
V. Limit-Cycle Case	97
V. Lotka-Volterra Model	103
VI. Concluding Remarks	107
Appendix A. Period of the Rotating Flow	108
Appendix B. Derivation of Equation (2.7)	109
References	110

FUNCTIONAL ORGANIZATION IN ARTIFICIAL ENZYME MEMBRANES— ACCOMPLISHMENTS AND PROSPECTS

DANIEL THOMAS*

E.R.A. n = 338 du C.N.R.S., Laboratoire de Technologie Enzymatique Université de Technologie de Compiègne, France.

I.	Introduction	113
II.	Methods of Preparation of Artificial Enzyme Membranes	115
III.	Basic Equations	116
IV.	The Effect of the Composition and Structure of the Membrane Itself on the	
	Enzyme Membrane Behavior	117
V.	The Effect of the Reactant Concentration Distributions on the	
	Enzyme Membrane Behavior	119
VI.	Conclusion	121
	References	122

SPATIOTEMPORAL ORGANIZATION IN CHEMICAL AND CELLULAR SYSTEMS*†

B. HESS, A. BOITEUX, H. G. BUSSE

Max-Planck-Institut für Ernährungsphysiologie, 46 Dortmund, Rheinlanddamm 201, Germany

and

G. GERISCH

Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft,
74 Tübingen, Spemannstrasse 37-39, Germany

DEDICATED TO PROFESSOR A. BUTENANDT ON THE OCCASION OF HIS 70TH BIRTHDAY

I.	Introduction	137
II.	Glycolysis	138
III.	Oscillating Cellular Respiration	148
IV.	Cellular Oscillation and Pattern Formation	152
V.	Chemical Oscillation and Pattern Formation	156
VI.	Outlook	166
	References	167

THEORETICAL MODELS FOR BACTERIAL MOTION AND CHEMOTAXIS

JEAN-PIERRE BOON*

Faculté des Sciences, Université Libre de Bruxelles, 1050 Bruxelles, Belgium

I.	Int	roduction	170
II.	Exp	perimental Observation of Chemotaxis and of Bacterial Motion	172
	A.	One-Dimensional Migration	172
	В.	Radial Migration	172
	C.	One-Dimensional Migration in the Presence of an Attractant	
		Concentration Gradient	173
	D.	Motility Measurements by Path Tracing	174
	E.	Motility Measurement by Light Scattering	175
III.	The	coretical Models	176
	A.	Preliminary Remarks	176
	B.	Transport Equation for Chemotactic Motion	177
	C.	One-Dimensional Step Model	178
	D.	Boundary Motion of Bacterial Populations	181
7. 15.	E.	Bacterial Chemotaxis in the Presence of an External Concentration	
		Gradient	186
IV.	Cor	aclusions	188
	References		

THE MOLECULAR VARIATIONS OF CYTOCHROME c AS A FUNCTION OF THE EVOLUTION OF SPECIES*

E. MARGOLIASH

Department of Biological Sciences, Northwestern
University,
Evanston, Illinois

I.	Prospects of Molecular Studies of Evolution		
II.	Cytochrome c Protein Structures and Function	195	
	A. The Variability of Cytochrome c Primary Structures	198	
	B. The Invariance of Cytochrome c Tertiary Structure and Function	205	
	C. The Role of Evolutionary Selection	208	
III.	Statistical Phylogenetic Trees	210	
IV.	Ancestral Amino Acid Sequences	218	
V.	Rates of Evolutionary Change in Cytochrome c Codons	223	
	A. Hypervariable, Normally Variable, and Invariant Codons	224	
	B. Concomitantly Variable Codons—Covarions	226	
	C. Evolutionary Significance of Covarions	228	
VI.	The Spatial Structure of Cytochrome c and Constraints on Evolutionary		
	Variations	231	
	A. The Structures of Ferric and Ferrous Cytochrome c	232	
	B. Molecular Distribution of Evolutionarily Variable Positions	236	
VII.	Ion-Binding Properties of Cytochrome c as a Basis for Species Variability	240	
VIII.	Concluding Summary: Character of the Evolutionary Transformations of		
	Cytochrome c	243	

THE DEVELOPMENT OF PATTERN: MECHANISMS BASED ON POSITIONAL INFORMATION

L. WOLPERT

Department of Biology as Applied to Medicine, The Middlesex Hospital Medical School, London, England

I.	Positional Signaling and Hydra Regeneration	257
II.	The Progress Zone and the Chick Limb	263
III.	Universality	265
	References	267

A MEMBRANE MODEL FOR POLAR ORDERING AND GRADIENT FORMATION

B. C. GOODWIN

School of Biological Sciences, University of Sussex, Brighton, Sussex, England

I.	The Wave-Broom Model	269
II.	The Establishment of a Metric	278
	References	280

÷ O₆ ₩: 33 £ 76) 163 ±2. 58 13. 9) * © (%) (6) **.**5 **.**●

STRUCTURE AND TRANSPORT IN BIOMEMBRANES

LIANA BOLIS

Institute of General Physiology, University of Rome, Italy

I.	Introduction	301
II.	Active Transport	303
III.	Structure of Biological Membranes	304
	References	306

PHYSICOCHEMICAL PROBLEMS IN EXCITABLE MEMBRANES

Y. KOBATAKE

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan

I.	Stability and Excitability of Squid Giant Axons	320
II.	Excitability and Stability of a Model Membrane Accompanying a	
56	Conformational Change	325
III.	Excitation Process in Terms of Dissipative Structure in a Membrane System	335
IV.	Concluding Remarks	339
	References	340

THERMODYNAMIC CONSIDERATIONS ON THE BEHAVIOR OF EXCITABLE MEMBRANES

M. DELMOTTE, J. JULIEN, J. CHARLEMAGNE, AND J. CHANU

Laboratoire de Thermodynamique des Milieux Ioniques et Biologiques,

Université Paris VII, 2 place Jussieu, Paris, France*

I.	Biological Data .	343
II.	Suggested Model	344
III.	Model Thermodynamic Study and Biological Interpretation	345
IV.	Conclusion	346
V	References	346

液 90) Oli 327 322 79 **→**s 52B 31 26

ON THE CHANGES IN CONDUCTANCE AND STABILITY PROPERTIES OF ELECTRICALLY EXCITABLE MEMBRANES DURING VOLTAGE-CLAMP EXPERIMENTS

R. LEFEVER AND J. L. DENEUBOURG

Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium

I.	Int	roduction	349
II.	Ge	neral Hypotheses of the Model	352
	A.	Structure of the Ionophores	352
	B.	Distribution of the Ionophores in the Membrane	352
	C.	Effect of the Electric Field on the Conformational Equilibrium	352
	D.	Effect of the Electric Field on the Ionic Transport	353
	E.	Environment of the Ionophores	353
III.	For	mulation of the Model	353
	A.	Kinetics of the Transition between (R) and (S) Conformations	353
	B.	Derivation of the Current-Voltage Relation	356
IV.	Pro	perties of the Model and Experimental Predictions under Voltage Clamp	360
	A.	Kinetics of the Sodium Activation	361
	B.	The Spontaneous Inactivation of g _{Na}	363
	C.	The Instantaneous Linearity of the I-V Curves	367
V.	Sta	bility of Space-Clamped Action Potentials in the Absence of Sodium	
		ctivation	368
VI.	Co	nclusions	372
	Re	ferences	374