@1 29.2% NE (E) 30: Call \$ ·


New Developments in the One-Electron Theory of π-Electron Systems	S
By H. Hartmann	1
Manuscript received Dec. 1961	
Spectroscopy of Transition-Group Complexes	
By Chr. Klixbüll Jørgensen	33
Manuscript received Dec. 1961	
Convex Molecules in Gaseous and Crystalline States	
By Taro Kihara	147
Manuscript received Oct. 1961	
Theories on the Magnetic Properties of Compounds	
By Shoichiro Koide and Takehiko Oguchi	189
Manuscript received Nov. 1961	
Forbidden Transitions in Organic and Inorganic Systems	
By Andrew D. Liehr	241
Manuscript received Nov. 1961	
The Formal Statistical Theory of Transport Processes	
By James A. McLennan, Jr	261
Manuscript received Feb. 1962	
Quantum Mechanical Interpretation of Nuclear Quadrupole Couplin	g
Data	
By E. Scrocco	319
Manuscript received Feb. 1962	
Collision Theory of Chemical Reaction Rates	
By B. Widom	353
Manuscript received Nov. 1961	
Author Index	387
Subject Index	397

NEW DEVELOPMENTS IN THE ONE-ELECTRON THEORY OF π-ELECTRON SYSTEMS

H. HARTMANN, Institute of Physical Chemistry, University of Frankfurt-am-Main

I.	Introduction	1
II.	The One-Electron States of the Ethylene Molecule	4
III.	The Basic Idea	8
IV.	The Structure Matrix	9
v.	Formal Development of the Theory	10
VI.	The Parameters of the Theory	13
VII.	Absorption Spectra of Aromatic Hydrocarbons	17
III.	Resonance Energies	18
IX.	Charge Densities, Self Consistency, Bond Orders	21
X.	Quantitative Analysis of the Parameters	25
XI.	Consequences of the Rule of Geometric Mean	28
	References	30

SPECTROSCOPY OF TRANSITION-GROUP COMPLEXES

CHR. KLIXBÜLL JØRGENSEN, Office of the Science Adviser to NATO, Paris, France*

I. Introduction	33
A. Configurations and Orbitals	35
B. Interelectronic Repulsion Parameters	39
II. Evolution of the Ligand Field Theory	42
A. Bethe's Results	42
B. Comparison with Diatomic Molecules	47
C. Energy Levels of the 3d, 4d, 5d Groups	57
D. Nephelauxetic Effect and Covalent Bonding	67
E. M.O. Treatment of Electron Transfer Spectra	75
F. Tetragonal Complexes	84
G. Crystalline Compounds	126
H. Lanthanides and 5f Elements	133
III. Conclusions	137
References	138

CONVEX MOLECULES IN GASEOUS AND CRYSTALLINE STATES

TARO KIHARA, Department of Physics, University of Tokyo, Tokyo

1. Introduction	147
II. Geometry of Convex Bodies	148
III. Convex Cores of Molecules	156
IV. Diffusion Coefficient for Heavy Molecules	157
V. Second Virial Coefficients for Convex Molecules	164
VI. Convex Molecules in the Crystalline State	171
A. Introduction	171
B. Methane	172
C. Carbon Dioxide	173
D. Nitrogen	177
E. Benzene	178
F. Ethylene	179
VII. Multipole Interactions in Crystals	180
A. Interaction between Permanent Multipoles	180
B. Stability of Cubic Close Packing for Heavy Rard	e-Gas
Atoms	186
VIII. Acknowledgment	188
References	188

THEORIES ON THE MAGNETIC PROPERTIES OF COMPOUNDS

SHOICHIRO KOIDE, College of General Education, University of Tokyo

and

TAKEHIKO OGUCHI, Tokyo University of Education

I.	Introduction	189
II.	Paramagnetic Susceptibilities	191
III.	Energy Levels in Crystal Field (I)	194
IV.	Energy Levels in Crystal Field (II)	197
V.	Intra-atomic Interactions	201
VI.	Interaction with the Motion of Surrounding Nuclei	205
	A. Intensity Caused by the Odd Vibrations	206
	B. Band Width due to the Excitation of Even Vibrations	208
	C. Jahn-Teller Effect	209
VII.	Covalency Effects	210
VIII.	Super-Hyperfine Coupling	215
IX.	Direct Exchange Interaction	218
X.	Superexchange Interaction (I)	223
XI.	Superexchange Interaction (II)	228
XII.	Double-Exchange Interaction	233
XIII.	Indirect-Exchange Interaction	235
	References	238

THE FORMAL STATISTICAL THEORY OF TRANSPORT PROCESSES

JAMES A. McLENNAN, Jr., Lehigh University, Bethlehem, Pennsylvania

I.	Introduction	261
II.	Liouville Equation for a Non-Isolated System	264
III.	Specification of the External Forces	268
IV.	Continuous System	272
V.	The Non-Equilibrium Ensemble	276
VI.	Local Equilibrium	278
VII.	Macroscopic Conservation Laws and Thermodynamic Variables	281
VIII.	Entropy Production	285
IX.	Transport Relations	288
	Ionized Medium	303
XI.	Quantum Theory	305
XII.	Discussion	310
XIII.	Acknowledgments	316
	References	316

QUANTUM MECHANICAL INTERPRETATION OF NUCLEAR QUADRUPOLE COUPLING DATA

E. SCROCCO, Institute of Chemical Physics, University of Pisa, Italy

I.	Introduction	319
II.	Electric Field Gradient Produced by all the Charged Particles	,
	Present in the Molecule	323
	A. The Theory of Townes and Daily	323
III.	The Quantum Mechanical Calculation of an Observable Quan-	
	tity in the Many-Particle Systems	325
	A. Wave Functions for Diatomic Molecules	332
	B. Examples: CO17 and N ₂ Molecules	333
IV.	The Influence of the Interactions Among the Groups in a Molecule	
	on the Quadrupole Coupling Constant	339
	A. The Theory of Electron Pairs	342
	B. Future Prospects	349
	References	351

COLLISION THEORY OF CHEMICAL REACTION RATES

B. WIDOM, Department of Chemistry, Cornell University, Ithaca, New York

I.	Introduction		353
II.	. Definitions and Assumptions		354
	A.	Reactant States and Binary Collisions	354
	B.	Transition Probabilities and Detailed Balance	359
	C.	Collision Number and Completeness	364
III.	Relax	kation Equation and Rate Equation	368
	A.	Relaxation Equation and Its Formal Solution	368
	B.	Rate Equation and Its Formal Solution	371
IV.	Reac	Reaction Rate	
	A.	Rate Constant and Relaxation Times	374
	B.	Mean First Passage Time	375
V.	Stead	ly-State and Equilibrium Distributions	378
		Existence and Nature of the Steady State	378
	B.	Steady-State and Equilibrium Rate Constants	379
	C.	Difference Between the Steady-State and Equilibrium Rate	
		Constants	382
	References		385