| Statistical-Mechanical Theory of Transport Processes. X. The Heat of Transport in Binary Liquid Solutions.                            |     |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|
| By Richard J. Bearman, John G. Kirkwood, and Marshall Fixman                                                                          | 1   |
| Theoretical and Experimental Aspects of Isotope Effects in Chemical Kinetics.  By Jacob Bigeleisen and Max Wolfsberg                  | 15  |
| Dielectric Properties of Dilute Polymer Solutions.  By L. de Brouckère and M. Mandel                                                  | 77  |
| Some Physical Aspects of Gaseous Chemical Kinetics.  By G. Careri                                                                     | 119 |
| Transport Processes in Liquids.  By Frank C. Collins and Helen Raffel                                                                 | 135 |
| The Relation Between Structure and Chemical Reactivity of Aromatic Hydrocarbons with Particular Reference to Carcinogenic Properties. |     |
| $By \ R. \ Daudel$                                                                                                                    | 165 |
| Molecular Theory of Surface Tension.  By A. Harasima                                                                                  | 203 |
| Recent Developments in Molecular Orbital Theory.  By H. C. Longuet-Higgins                                                            | 239 |
| Intermolecular Forces and Equation of State of Gases.  By Taro Kihara                                                                 | 267 |
| On Statistical Mechanics and Electromagnetic Properties of Matter.  By P. Mazur                                                       | 309 |
| The Application of the Theory of Stochastic Processes to Chemical Kinetics.                                                           |     |
| By Elliott W. Montroll and Kurt E. Shuler                                                                                             | 361 |
| Author Index                                                                                                                          | 401 |
| Subject Index                                                                                                                         | 409 |

# STATISTICAL-MECHANICAL THEORY OF TRANSPORT PROCESSES. X. THE HEAT OF TRANSPORT IN BINARY LIQUID SOLUTIONS\*

RICHARD J. BEARMAN, JOHN G. KIRKWOOD, and MARSHALL FIXMAN, J. Sterling Chemistry Laboratory, Yale University

| I.   | Introduction                                                    | 1  |
|------|-----------------------------------------------------------------|----|
| II.  | Phenomenological Theory                                         | 2  |
| III. | Statistical-Mechanical Expressions for the Densities and Fluxes | 3  |
| IV.  | The General Expression for the Heat of Transport                | 6  |
| V.   | An Approximate Formula for the Heat of Transport                | 12 |
| Refe | erences                                                         | 13 |

## THEORETICAL AND EXPERIMENTAL ASPECTS OF ISOTOPE EFFECTS IN CHEMICAL KINETICS \*

JACOB BIGELEISEN and MAX WOLFSBERG, Chemistry Department, Brookhaven National Laboratory

| 1.  | Introduction                                                | 16 |
|-----|-------------------------------------------------------------|----|
| II. | Theory of the Isotope Effect on Reaction Rates              | 17 |
|     | A. Introduction                                             | 17 |
|     | B. Discussion of Isotope Effect in Transition State Theory. |    |
|     | C. General Predictions on Kinetic Isotope Effects           | 26 |
|     | The Reaction Coordinate                                     |    |
| IV. | Unimolecular Reactions                                      | 31 |
| V.  | Experimental Methods                                        | 35 |
|     | A. Chemical vs. Isotopic Competitive Methods                | 36 |
|     | B. Kinetics of the Isotopic Competitive Method              | 37 |
|     | (1) Isotopic Analysis of the Substrate after a Known        |    |
|     | Amount of Reaction                                          | 38 |
|     | (2) Isotopic Analysis of the Product after a Known Amount   |    |
|     | of Reaction                                                 | 40 |
|     | (3) Application of the Isotopic Competitive Method to       |    |
|     | Systems at the Tracer Concentration Level                   |    |
|     | (4) The Low Conversion Approximation                        |    |
|     | (5) The Method of Successive Product Fractions              | 43 |
|     | (6) Intramolecular Isotope Effects — A Special Case of the  |    |
|     | Isotopic Competitive Method                                 | 44 |
|     | (7) The Determination of the Isotope Ratios and the Prob-   |    |
|     | lem of Isotopic Homogeneity                                 | 48 |
|     | (8) Pre-equilibria                                          |    |
| VI. | Hydrogen Isotope Effects in Gas Reactions                   | 53 |
| II. | Hydrogen Isotope Effects in Reactions in Solution           | 61 |
|     | A. Isotope Effect in the Elucidation of Reaction Mechanism  |    |
|     | B. Location of Kinetically Significant Hydrogen             | 62 |
|     |                                                             |    |

#### 16

#### JACOB BIGELEISEN AND MAX WOLFSBERG

| C. Acid-Base Catalysis in H <sub>2</sub> O-D <sub>2</sub> O Solvents | 62 |
|----------------------------------------------------------------------|----|
| D. Secondary Isotope Effects                                         | 63 |
| VIII. Carbon Isotope Effects in Decarboxylation Reactions            | 65 |
| A. Intermolecular and Intramolecular Isotope Effects                 | 65 |
| B. Catalyzed Decarboxylations                                        | 72 |
| C. C13 versus C14 Isotope Effects                                    | 73 |
| IX. Acknowledgments                                                  | 73 |
| References                                                           | 74 |

## DIELECTRIC PROPERTIES OF DILUTE POLYMER SOLUTIONS

L. DE BROUCKÈRE and M. MANDEL, Faculty of Science, University of Brussels

| I.     | General Introduction                                       | 77  |
|--------|------------------------------------------------------------|-----|
| II.    | Theoretical Considerations on Static Dielectric Constants  | 78  |
| III.   | Theoretical Considerations on Dielectric Relaxation        | 83  |
| IV.    | The Dipole Moment of the Isolated Polymer Chain Molecule   | 89  |
| V.     | The Dipole Moment of Polymer Chains in Dilute Solutions    | 95  |
|        | Interaction between Polymer and Polar Solvents in Dilute   |     |
|        | Solutions                                                  | 101 |
| VII.   | Dielectric Relaxation of High Polymers in Dilute Solutions | 106 |
| VIII.  | Conclusions                                                | 116 |
| Refere | TI CAR                                                     | 116 |



## SOME PHYSICAL ASPECTS OF GASEOUS CHEMICAL KINETICS

G. CARERI, Istituto di Fisica, Universitá di Padova

| I.   | Introduction                                                   | 119 |
|------|----------------------------------------------------------------|-----|
| II.  | A Discussion on the Collision Theory                           | 120 |
| III. | An Experimental Test of the Activated State Method             | 124 |
| IV.  | Some Theoretical Investigations of the Equilibrium Hypothesis. | 129 |
| V.   | Conclusions                                                    | 133 |
| Refe | erences                                                        | 133 |

#### TRANSPORT PROCESSES IN LIQUIDS \*

FRANK C. COLLINS and HELEN RAFFEL, Polytechnic Institute of Brooklyn

| I.     | Introduction                                         | 135 |
|--------|------------------------------------------------------|-----|
| II.    | Statistical-Mechanical Background                    | 139 |
| III.   | Brownian Motion Theory                               | 141 |
| IV.    | Brownian Motion Treatment of Transport Processes     | 143 |
| V.     | Transport Processes and the Superposition Hypothesis | 153 |
| VI.    | Rigid Sphere Model                                   | 154 |
| VII.   | Cell Theory and Transport Processes                  | 161 |
| VIII.  | Transition State Theory of Transport Processes       | 161 |
|        | Conclusion                                           | 163 |
| Refere | ences                                                | 163 |

# THE RELATION BETWEEN STRUCTURE AND CHEMICAL REACTIVITY OF AROMATIC HYDROCARBONS WITH PARTICULAR REFERENCE TO CARCINOGENIC PROPERTIES

R. DAUDEL, Sorbonne and Centre de Chimie Théorique de France

| I. Introduction                                                      | 165 |
|----------------------------------------------------------------------|-----|
| II. General Remarks                                                  | 166 |
| III. Electronic Organization of Atoms                                | 168 |
| IV. Electronic Organization and the Classification of Chemical Bonds | 170 |
| V. The Structure of Aromatic Hydrocarbons                            | 173 |
| VI. Theoretical Calculation of the Relative Rates of Reaction of     |     |
| Aromatic Hydrocarbons; Comparison with Experimental Data.            | 179 |
| VII. Applications to the Study of the Carcinogenic Power of Aromatic |     |
| Hydrocarbons                                                         | 191 |
| References                                                           | 199 |



#### MOLECULAR THEORY OF SURFACE TENSION

#### A. HARASIMA, International Christian University

| I.     | Introduction                                                  | 203 |
|--------|---------------------------------------------------------------|-----|
| II.    | Thermodynamics of Surface Tension                             | 204 |
| III.   | Calculation of the Surface Energy                             | 208 |
| IV.    | Relation between the Surface Energy and the Heat of Vaporiza- | 197 |
|        | tion                                                          | 214 |
| V.     | Statistical-Mechanical Treatment of the Surface Tension       | 216 |
| VI.    | Stresses in the Transition Layer                              | 220 |
| VII.   | Critique of the Assumption of a Mathematical Plane of Density |     |
| 36     | Discontinuity                                                 | 226 |
| VIII.  | Approximate Theories of Surface Tension                       | 227 |
|        | Quantum-Mechanical Treatment                                  | 230 |
| Refere | ences                                                         | 236 |



## RECENT DEVELOPMENTS IN MOLECULAR ORBITAL THEORY

H. C. LONGUET-HIGGINS, Department of Theoretical Chemistry, University of Cambridge

| I. Introduction                          | 239 |
|------------------------------------------|-----|
| II. The Method of Molecular Orbitals     | 240 |
| III. The Self-Consistent Field MO Theory | 242 |
| IV. Aromatic Hydrocarbon Spectra         | 245 |
| V. Open Shell Molecules                  | 259 |
| VI. More Complex Molecules               | 260 |
| VII. Free-Electron MO Theory             | 262 |
| References                               | 263 |



## INTERMOLECULAR FORCES AND EQUATION OF STATE OF GASES

TARO KIHARA, Department of Physics, University of Tokyo

| I. Additive and Nonadditive van der Waals Interactions | 267 |
|--------------------------------------------------------|-----|
| A. Van der Waals Interactions by Perturbation Theory   | 268 |
| B. Van der Waals Interactions by Variation Method      | 273 |
| C. A Standard Model of the Intermolecular Potential    | 277 |
| II. Second and Third Cluster Integrals                 | 278 |
| A. Cluster Integrals and Equations of State            | 279 |
| B. Quantum Corrections to the Cluster Integrals        | 283 |
| C. Cluster Integrals for the Standard Potential        | 288 |
| D. Comparison with Experiment for Rare Gases           | 291 |
| III. Dense Gases and Phase Transitions                 | 294 |
| A. Condensed Gases at Low Temperatures                 | 295 |
| B. Condensed Gases at High Temperatures                | 297 |
| C. A Lattice Model of Hot Dense Gases                  | 301 |
| IV. Acknowledgments                                    | 306 |
| References                                             | 306 |



# ON STATISTICAL MECHANICS AND ELECTROMAGNETIC PROPERTIES OF MATTER

#### P. MAZUR, Lorentz Institute, University of Leiden

| I. General Concepts                                         | 310              |
|-------------------------------------------------------------|------------------|
| A. Statistical Mechanics and Electromagnetic Properties     |                  |
| Matter                                                      | 310              |
| B. Formalism                                                | 311              |
| C. Time Derivative of a Dynamical Quantity                  | 313              |
| D. Definitions of Densities; Electric and Magnetic Moment   |                  |
| E. Conservation Laws                                        | 315              |
| II. Derivation of the Maxwell Equations from Electron Theor |                  |
| A. Introduction                                             | 317              |
| B. Derivation of the Maxwell Equations Corresponding to I   |                  |
| II.1 to II.3                                                | 320              |
| C. Derivation of the Fourth Maxwell Equation                | 322              |
| D. General Remarks                                          | 324              |
| III. Ponderomotive Force in a Dielectric                    | 325              |
| A. Introduction                                             | 325              |
| B. Balance of Translational Momentum of the Atoms           | 326              |
| C. Pressure and Ponderomotive Force in a Dielectric         | 330              |
| D. Alternative Form of Ponderomotive Force and Pressure     |                  |
| Equilibrium                                                 | 331              |
| IV. Refraction of Light                                     | 335              |
| A. Introduction                                             | 335              |
| B. The Integral Equation for the Average Polarization       | 336              |
| C. Generalization of the Lorentz-Lorenz Formula             | 339              |
| D. The Molecular Equation for the Dipole Moments            | 342              |
| E. Variation of the Lorentz-Lorenz Function with Density    | 346              |
| V. Molecular Theory of Light Scattering                     | 349              |
| A. Introduction                                             | 349              |
| B. The Microscopic Field                                    | 350              |
| C. Expansion of the Microscopic Field as a Power Series i   | $n \alpha_0 352$ |
| D. Intensity of Scattered Light                             | 354              |
| Appendix I                                                  | 356<br>357       |
| Appendix II                                                 |                  |
| Appendix III                                                |                  |
| References                                                  | 359              |



# THE APPLICATION OF THE THEORY OF STOCHASTIC PROCESSES TO CHEMICAL KINETICS \*

ELLIOTT W. MONTROLL, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland

#### and

KURT E. SHULER, National Bureau of Standards

| I. Introduction                                            | 361 |
|------------------------------------------------------------|-----|
| A. The Curtiss-Prigogine-Takayanagi Model                  | 362 |
| B. The Model of Zwolinski and Eyring                       | 363 |
| C. The Model of Kramers                                    | 365 |
| II. Discrete Energy-Level Model for Unimolecular Reactions | 367 |
| III. Transitions without Reaction                          | 371 |
| IV. Reaction as an Absorbing Barrier                       | 373 |
| V. General Theory of Mean First Passage Time               | 377 |
| VI. Perturbation Theory and Equilibrium Theory of Chemical |     |
| Kinetics                                                   | 380 |
| VII. The Harmonic Oscillator                               | 382 |
| Appendix I                                                 | 392 |
| Appendix II                                                | 396 |
| References                                                 | 398 |