Large Scale Ocean Circulation

GEORGE VERONIS

Department of Geology and Geophysics Yale University, New Haven, Connecticut

	Introduction	2
I.	The Equilibrium Figure of a Self-Gravitating, Rotating, Homogeneous	
	Mass of Fluid	3
Π.	Transformations of the Equations of Motion of a Fluid	6
III.	The Coriolis Acceleration	14
	A. Conservation of Potential Vorticity	15
	B. An Angular Momentum Argument for the Neglect of $2\Omega \cos \phi \dots$	17
IV.	Thermodynamic Simplifications-the Boussinesq Approximation	18
	A. The Adiabatic Hydrostatic Field	19
	B. The Boussinesq Equations	21
	C. Use and Limitations of the Boussinesq Approximation	23
v.	Scaling of the Equations	28
	A. Small Scale Motions—the f-plane	30
	B. Motions of Intermediate Scale—the β -Plane	31
	C. Large Scale Motions	32
VI.	Geostrophic Flow	33
VII.	Frictional Dissipation	36
	A. Ekman Layers	36
	B. Ekman Layers in the Ocean	40
VIII.	Modeling of Current Systems	42
	A. Wind-Driven Ocean Circulation	43
	B. Extensions of Stommel's Model	49
	C. Inertial Effects	53
IX.	The Thermohaline Circulation	56
	A. The Pressure Equation	57
	B. Boundary Conditions at the Top and Bottom	58
	C. Solutions by Means of a Similarity Transformation	58
	D. Generalization of the Similarity Solutions	60
	E. Solutions to the Ideal-Fluid Thermocline	63
	F. The Effect of a Barotropic Mode	65
	G. The Role of Diffusion	68
	H. Remarks about Thermohaline Circulation Models	71

George Veronis

Х.	Abyssal Circulation	72
XI.	Laboratory Simulation of Large Scale Circulation (with C. C. Yang)	75
	A. The Basis for the Simulation	75
	B. Discussion of More Complete Solutions	78
	C. The Flow Due to a Source of Dense Water	81
	References	90

Introduction

Our theoretical picture of large scale ocean circulation has grown mostly out of the development of simple models which isolate the particular phenomenon to be analyzed. In this sense dynamical oceanography differs substantially from dynamical meteorology which has progressed hand-in-hand with the amount and types of observational data that have been accumulated. The difficulties and costs of gathering oceanographic data preclude the same type of development of oceanographic theories.

The present paper contains a discussion of some of these simple theoretical models together with an attempt to extend a few of them to take into account additional features which are not normally included in the models. The presentation is necessarily selective and another author would no doubt have emphasized other models or other approaches. At the outset the plan was to discuss steady state models as well as those which include transient behavior. However, as the work progressed it became necessary to restrict attention to steady models only.

The opening section includes a simple model for deriving the ellipticity of the earth. It is followed by the derivation of the equations of fluid motion in elliptical coordinates and the approximation involved in the use of a spherical coordinate system to analyze oceanographic motions. The latter is included because the errors associated with the use of spherical coordinates are normally referred to in a casual fashion and no real attempt is made to quantify them. The approximations encountered in theoretical studies of large scale flows are then discussed and the stage is set for introducing theoretical modeling.

Simple geostrophic flows and their significance are presented next because they form the basis for the remainder of the paper. The study of Ekman layers and the role that they play in large scale circulation are followed by a brief discussion of turbulent transport.

2