Contents

Contributors	to Volume	VIII.	•	•	•	•	•		•	•	•	•	•	•	•	•		•	v
Theodore von	Kármán: A	Tribute .																	vii

Magneto-Aerodynamic Flow Past Bodies

BY W. R. SEARS AND E. L. RESLER, JR., Cornell University, Ithaca, New York

Notation						•											•		1
Introduction																			4
I. Incompressible Flow	•																		6
II. Compressible Flow .																			23
III. Hall Effects																			50
References	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	64

Incompressible Second-Order Fluids

By HERSHEL MARKOVITZ AND BERNARD D. COLEMAN, Mellon Institute, Pittsburgh, Pennsylvania

Ι.	Introduction	69
II.	Relation to General Simple Fluids	71
III.	Steady Simple Shearing Flow	77
IV.	Viscometric Flows	79
v.	Steady Extension of a Cylinder	87
VI.	Relation to Classical Viscoelasticity	89
VII.	Nonsteady Shearing Flows	96
	Acknowledgments	100
	References	100

The Generation of Sound by Turbulent Jets

BY H. S. RIBNER, Institute of Aerophysics, University of Toronto, Canada

Notation			•	•	•	•	104
I. Introduction \ldots				•		•	105
II. Résumé of Major Features	•			•		•	106
A. Simplified Physical Account	•						109
III. Physics of Sound Generation	•				•		109
IV. Equivalent Aerodynamic Generators of Sound						•	115
V. Sound Radiated from a Jet						•	119
B. Mathematical Development							142
VI. Governing Equations		•		•	•	•	142

CONTENTS

VII.	Convection Effects for a Simplified Model of Turbulence			151
VIII.	Refraction Effects Due to the Mean Flow			159
IX.	Improved Model: Isotropic Turbulence Superposed on Mean Flow			163
X.	Sound Emission from a Complete Jet			169
XI.	Asymptotic Behavior at High Mach Number			175
	Acknowledgment		•	178
	References	•		178

Stability of Motion of Solid Bodies with Liquid-Filled Cavities by Lyapunov's Methods

By V. V. RUMYANTSEV, Institute of Mechanics of the U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.

Notati	ion	
Introd	luction	
Ι.	Simplest Cases of Motion; the Cavity is Completely Filled 186	
II.	Stability of Motion of a Solid-Liquid Body with Respect to a Part of the	
	Variables	
III.	Stability of Steady Motion of a Solid Body with Liquid-Filled Cavity . 214	
	References	

Introduction to the Theory of Oscillations of Liquid-containing Bodies

By N. N. MOISEEV, Computing Centre of the U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.

Introduction	
I. Survey of Special Problems	
II. General Properties of the Equations	
References	
Selected Bibliography ,	
Author Index	
Subject Index	