Contents

CONTRIBUT	OR	s ′	го	V	OL	UN	ΔE	7	•		•				•				•	•	•	•	\mathbf{v}
Preface																							vii

Hypersonic Flow over Slender Bodies Associated with Power-Law Shocks

By HAROLD MIRELS, Lewis Research Center, National Aeronautics and Space Administration, Cleveland, Ohio

I. Introduction	•	 2
II. Hypersonic Slender-Body Theory		 4
III. Flows Associated with Power-Law Shocks		 8
IV. Flows Associated with Slightly Perturbed Power-Law Shocks	•	 26
V. Integral Methods	•	 36
VI. Validity of Self-Similar Solutions	•	 43
VII. Further Discussion of Integral Methods		 47
VIII. Concluding Remarks	•	 49
Notation	•	 51
References		 52
Addendum	•	 317

The Mathematical Theory of Equilibrium Cracks in Brittle Fracture

By G. I. BARENBLATT, Institute of Geology and Development of Combustible Minerals of the U.S.S.R. Academy of Sciences, Moscow, U.S.S.R.

Ι.	Introduction	56
II.	The Development of the Equilibrium Crack Theory	62
III.	The Structure of the Edge of an Equilibrium Crack in a Brittle Body .	69
IV.	Basic Hypotheses and General Statement of the Problem of Equilibrium	
	Cracks	76
v.	Special Problems in the Theory of Equilibrium Cracks	90
VI.	Wedging; Dynamic Problems in the Theory of Cracks	114
Refere	ences	125

Plasticity Under Non-Homogeneous Conditions

By W. OLSZAK, J. RYCHLEWSKI AND W. URBANOWSKI, Institute of Fundamental Technical Problems, Polish Academy of Sciences, Warsaw

Ι.	Physical Foundations												132
II.	Plane Strain										•	•	151
III.	Particular Solutions							•					183
IV.	Elastic-plastic Non-homogeneou	us	Plat	es.									190

CONTENTS

V. Limit Analysis and Limit Design		191
VI. Propagation of Elastic-plastic Waves in a Non-homogeneous Medium		201
VII. Other Problems		203
References		206

Some Elementary Problems in Magneto-hydrodynamics

BY RAYMOND HIDE AND PAUL H. ROBERTS, Physics Department, King's College (University of Durham), Newcastle-upon-Tyne, 1, England

Ι.	Introduction		216
II.	Basic Equations of Magneto-hydrodynamics		219
III.	Electromagnetic and Mechanical Effects; Dimensionless Parameters		224
IV.	Boundary Conditions		233
V.	Plane Waves	•	244
VI.	Alfvén Waves in Systems of Finite Extent	•	261
VII.	Gravity Waves: Rayleigh-Taylor Instability		267
VIII.	Gravitational Instability: Jeans' Criterion	•	270
IX.	Steady Flow between Parallel Planes		274
Х.	Flow due to an Oscillating Plane: Rayleigh's Problem	•	286
XI.	Steady Two-dimensional Inertial Flow in the Presence of a Magnetic Field	•	300
Apper	ndix A: The Hydromagnetic Energy Equation	•	305
Apper	ndix B: Relativistic Magneto-Hydrodynamics	•	311
Ackno	owledgements		313
Refer	ences	•	313
Auth	or Index		321
Subje	ect Index		327