CONTENTS

CONTRIBUTORS																	
PREFACE	 	 • •	•	•	 				•	•	 •	•	٠	•	•	•	vii

The Turbulent Boundary Layer

BY FRANCIS H. CLAUSER, Johns Hopkins University, Baltimore, Maryland

I. Introduction			 		Ŧ		٠	2
II. Constant-Pressure Layers			 	•				2
III. The General Turbulent Boundary Layer			 	•	•			21
IV. Further Consideration of the Behavior of Turbulent	Lay	yers						34
V. Conclusion.		•••		•	•	-	-	51
References				•				51

Nonlinear Elasticity

BY T. C. DOYLE AND J. L. ERICKSEN, Naval Research Laboratory, Washington, D. C.

I.	Introduction				,	•	•								•		-	53
II.	Coordinate Systems and Base Vectors			 				•	•								•	54
III,	Tensor Analysis of Two Point Fields							•	•	•								58
IV.	Deformation Measures			 •		•		÷	•						,	,		63
V.	The Formulation of the General Theory	•	•	 •	-			•	•		•		•				•	69
VI.	Boundary Value Problems	 •	-				•	•					·	•		•	,	78
VII.	Special Types of Materials							-			•							81
VIII,	General Solutions	 ٠				-	÷	•		-	-		•	•			•	88
IX.	Polynomial Approximations to Σ	 •	•	 • •	٠	·	•			•	-		-		•	-		97
Х.	Methods of Approximating	 •		 •	•			•	•			,	-			-		102
XI.	Motion of Surfaces in Continua	 ,		 •	٠	٠		•	•	•	•.		•	•		•	•	107
XII.	Generalizations of the Theory			 	•	•			•		•							108
·	References,						·		•	•	•					-	-	111

Physical and Statistical Aspects of Fatigue

BY A. M. FREUDENTHAL AND E. J. GUMBEL, Departments of Civil and Industrial Engineering, Columbia University, New York, N.Y.

I.	The Problem of Fatigue Design		 •								116
11.	Principal Aspects of the Fatigue Phenomenon			•							119
III.	Micromechanism of Progressive Fracture		 -	-	•		-	•			122
IV.	Fatigue Theories		 -	-			-	-		-	127
V.	Statistical Theory of Extreme Values					,					131
VI.	Distribution of Fatigue Life and Fatigue Strength		 ٠	•			•	•		-	138
VII.	Cumulative Damage								-		151
	References										

.

CONTENTS

Three-Dimensional Boundary Layer Theory

BY FRANKLIN K. MOORE, National Advisory Committee for Aeronautics, Lewis Flight Propulsion Laboratory, Cleveland, Ohio

I. Introduction
II. Equations of Laminar Motion
III. Bodies and Fluids in Rotation
IV. Surfaces of Revolution in Axial Motion
V. Yawed Infinite Cylinders and Related Problems
VI. Boundary Layer of Conical Surfaces. Separation
VII. Secondary Flows Abruptly Formed
VIII. Boundary Regions
IX. Laminar Stability
X. Approximate Methods. Concluding Remarks
References

Dislocation Theory of Plasticity of Metals

Br G. SCHOBCE, Westinghouse Research Laboratories, East Pittsburgh,	Pennsylvania
I. Introduction	, , , 229
II. Dislocations in Crystals	231
III. General Features of Dislocations.	235
IV. Experimental Evidence for Dislocations	246
V. Mechanical Properties.	253
References	274

The Poincaré-Lighthill-Kuo Method

Br H. S. Te	IEN , Daniel and Florence Guggenheim Jet Propulsion C	enter, California
	Institute of Technology, Pasadena, California	

1.	Introduction
Π.	Ordinary Differential Equations
	Hyperbolic Partial Differential Equations
IV.	Elliptic Partial Differential Equations
v.	Applications to Fluid Boundary Layer Problems ,
IV.	Concluding Remarks
	References

On the Concept of Elastic Stability

BY HANS ZIEGLER, Eidgenössische Technische Hochschule, Zürich, Switzerland

I. Current Methods
II. Preliminary Criticism
III. Mechanical Systems
IV. Stability of Linear Systems
V. Buckling by Compression
VI. Buckling by Torsion
VII. Critical Angular Velocities
References
author Index
ubject Index