CONTENTS

Contributors to Volume III
Boundary Layer Problems in Applied Mechanics
Br G. F. CARRIER, Brown University, Providence, Rhode Island
I. Introduction 1 II. The Ocean Current Problem 1 III. A Heat Transfer Problem 6 IV. A Convection Froblem 9 V. The Relaxation Oscillations of the Van der Pol Oscillator 12 VI. Other Boundary Layer Problems 16 VIII. General Remarks 16 VIII. Appendix 17 References 18
The One-Dimensional Isentropic Fluid Flow
BY OTHAR ZALDASTANI, Consulting Engineer, Boston, Massachusetts
I. Introduction 21 II. The Basic Equations 23 III. General Integrals of the Equation $Z_{vv} - Z_{uu} = \theta(v)Z_v$ 27 IV. The Initial Value Problem 33 V. Applications 47 References 58
Turbulent Diffusion: Mean Concentration Distribution in a Flow Field of Homogeneous Turbulence
Br F. N. FRENKIEL, Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Maryland
I. Introduction 62 II. Statistical Description of a Turbulent Field. 67 III. Fundamental Equation of Turbulent Diffusion 76 IV. Mean Concentration Distribution Produced by a Point Source of Diffusion 83 V. Mean Concentration Distribution Produced by an Infinite Line Source of Diffusion 95 VI. Differential Equations of Diffusion and Statistical Theory of Turbulence 98 Appendix 103 References 106 On Aerodynamics of Blasts
BY H. F. LUDLOFF, Department of Aeronautical Engineering, New York University,
New York, N. Y. I. Introduction

ix

CONTENTS

III.	Pressure and Density Fields behind Blasts Advancing over Arbitrary Flat	117
IV.	Head-on Encounter of a Shock with an Almost Perpendicular Wall	133 144
	On the Presence of Shocks in Mixed Subsonic-Supersonic Flow Patterns	
	BY GOTTFRIED GUDERLEY, Wright Air Development Center, Dayton, Ohio	
I.	Introduction	145
	the Mixed Type	146
II.	Physical Considerations.	167
	References	184

Vortex Systems in Wakes

BY L. ROSENHEAD, University of Liverpool, Liverpool, England

· I.	Deject of the Review	185
II.	General	186
III.	The Vortex Line Pair	186
·IV.	The Double Row of Vortices	188
` V.	Three-Dimensional Disturbances	191
VI.	Other Problems.	192
VII.	Three-Dimensional Wake.	192
VIII.	Conclusion	193
	References	193

Some Recent Results in the Theory of an Ideal Plastic Body

BY HILDA GEIRINGER, Wheaton College, Norton, Massachusetts

۰ I .	Definition and Derivs	tion of a G	eneral l	Plane	Probl	em.	• •			199`
п.	On the General Plane	Problem .								212
ΠI.	Examples of Complet	e Problems		• •				· · ·		270
	References			•••	• • •				 -	292
	· ·	Non-Autor	nomous	Syst	tems					

Non-Autonomous Systems

BY ALBERT I. BELLIN, Harvard University, Cambridge, Massachusetts

. I.	Introduction	• •	. '	• •									295
п.	The Topological Transformation.		,		•	. ,				•		+.	296
III.	Stability of Periodic Solutions				•		•		•				298
IV.	Indices of Fixed Points							•			٠		30 1
v.	Systems of Class D			• . •			۰.		۰.	•			304
VI.	The Equation: $\vec{x} + f(x) = Fg(\sin \omega t)$.		•		-								308
VII.	The Equation: $\ddot{x} + a^2 x = \phi(x, \dot{x}, k, e, t)$.							•		•		•	310
VIII.	The Equation: $\hat{x} + k\hat{x} + \omega^2(1 + \alpha x) = 3v$	cos	at										314
	References ,			• •	٠			·	•			٠	319
Autho	or Index					•••			-		٠		821

х