CONTENTS

CONTRIBUTOR	s :	го	I	Vo	LU	(M)	ЕI	I					•	•				•			v
PREFACE	•		•									٠		•	•	•	•	•			vii

On the Statistical Theory of Isotropic Turbulence

BY TH. VON KÁRMÁN AND C. C. LIN, Columbia University, New York, New and the Massachusetts Institute of Technology, Cambridge, Massachusetts	York,
I. Relation between Correlation and Spectral Theories.	. 2
II. Consideration of Similarity	. 6
III. Proposed Theory	. 11
IV. Detailed Study of the Early Period	. 16
V. Conclusion	. 18
References	. 19

The Laminar Boundary Layer in Compressible Flow

BY G. KUERTI, Harvard University, Cambridge, Massachusetts

Ι.	Introduction \ldots \ldots \ldots \ldots \ldots \ldots \ldots 2	3
II.	The Basic Equations	3
III.	The Simple Problem	9
IV.	The Mathematics of Boundary Layer Theory	7
V.	Results	9
	References	1

Bending of Curved Tubes

BY R. A. CLARK AND E. REISSNER, Massachusetts Institute of Technology, Cambridge, Massachusetts

I.	Introduction	93
II.	Formulation of the Problem	97
III.	The Equations for Bending of a Tube with Uniform Circular Cross Section	99
IV.	Trigonometric Series Solution for the Tube with Uniform Circular Cross	
	Section	102
v.	Asymptotic Solution for the Tube with Uniform Circular Cross Section. $% \mathcal{L}^{(n)}$.	109
VI.	The Equations for Bending of a Tube with Uniform Elliptical Cross	
	Section	117
VII.	Asymptotic Solution for the Tube with Uniform Elliptical Cross Section .	118
	References	122
	•	

CONTENTS

Recent Developments in Inverse and Semi-Inverse Methods in the Mechanics of Continua

BY P. F. NEMÉNYI, Naval Research Laboratory, Washington, D. C.

I.	Introduction
II.	Motion of Incompressible Inviscid Fluids
III.	Flow of a Viscous Incompressible Fluid
IV.	Gas Flows
v.	Elastostatics
VI.	Plasticity
VII.	Significance and Heuristic Value of the Inverse and Semi-Inverse Methods
	of Mechanics
	References

Theory of Filtration of Liquids in Porous Media

BY P. YA. POLUBARINOVA-KOCHINA, Corresponding Member of the Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R., AND S. B. FALKOVICH, Moscow, U.S.S.R.
I. Fundamental Equations of Steady Motion
II. Motion of Soil Waters without a Free Surface
III. Motions with a Free Surface-Zhukovsky's Function
IV. Motion with a Free Surface. Velocity Hodograph
V. The Seepage Line
VI. General Case of the Velocity Hodograph.
VII. Application of the Analytic Theory of Differential Equations 176
VIII. Inverse Methods
IX. Other Methods
X. Filtration in Multilayer Soils.
XI. Filtration of Oil
XII. Three-Dimensional Problems
XIII. Unsteady Flows
References
Author Index
SUBJECT INDEX

х