

目 次

まえがき

第1章 デルタ関数の基本的性質	1
§1.1 デルタ関数とは	1
§1.2 デルタ関数を近似する	
1.2.1 Fourier の積分定理とデルタ関数 ····································	
1.2.2 3次元の場合	
§1.3 デルタ関数の微分	17
§1.4 不連続関数を微分する	
§1.5 ゼロでの割り算と δ± 関数	
§1.6 超関数としてのデルタ関数	
1.6.1 汎関数概念の導入	
1.6.2 超関数	
1.6.3 汎関数微分	- 38
第2章 微分演算子の取り扱い	· 42
§ 2.1 演算子関数の構成	· 42
2.1.1 演算子の4則演算	· 42
2.1.2 演算子関数の定義と性質	· 45
§ 2.2 演算子関数の微分と Taylor 展開	· 49
§ 2.3 微分演算子とその関数	· 54
2.3.1 微分演算子の基本的性質	· 54
2.3.2 変位演算子をめぐって	- 56
2.3.3 回転演算子	61
§ 2.4 逆演算子 D_x^{-1} の定義と性質 ····································	62

第3章 線形常微分方程式の初期値問題 69	ļ
§ 3.1 初期値問題の設定 ······ 69	į
§3.2 定数係数の方程式 71	
3.2.1 簡単な例題71	
3.2.2 一般の場合 75	;
§ 3.3 変数係数の方程式	;
§ 3.4 Heaviside の演算子法と Laplace 変換 78	3
§ 3.5 Green 関数とその行列表示 82	2
第4章 簡単な線形偏微分方程式の解法 89)
§ 4.1 どのような問題を取り上げるか 89)
§ 4.2 Liouville の方程式と Fokker-Planck の方程式100)
4.2.1 Liouville の方程式100)
4.2.2 Fokker-Planck の方程式と拡散方程式103	3
§ 4.3 波動方程式とその周辺108	3
4.3.1 波動方程式108	3
4.3.2 同次型線形偏微分方程式11	1
4.3.3 電信方程式と Klein-Gordon 方程式112	2
§ 4.4 Schrödinger 方程式······115	5
§ 4.5 Laplace-Poisson の方程式と 3 次元波動方程式119	9
4.5.1 Green の定理と Laplace-Poisson の方程式120	0
4.5.2 3次元波動方程式と Lienard-Wiechert のポテンシャル12-	4
第5章 初等 Fourier 解析 ₁₃	1
§5.1 Fourier 級数をめぐって13	1
5.1.1 弦の振動――波動方程式の境界値問題13	1
5.1.2 Fourier 級数一般 ······13	6
5.1.3 Fourier 級数の和をつくる ······14	3
§5.2 波動の Fourier 解析14	6