生命の	生命の法則性――序に代えて 清 水	博
生物リ	生物リズムと引き込み 山口 陽	子
_	時間の流れ	3
=	自己組織現象としてのリズム	6
	クル「細胞内レベルのリズム現象線形振動とリミットサイクル「ゆらぎ」から成長するリミットサイクル「ゆらぎ」から成長するリミットサイ	
Ξ	リズムの協同現象	7.2
	引き込みとはなにか 引き込みの特質 カオスの出現	
四	生物における引き込み	17
	ズムとコミュニケーション 人間のコミュニケーションとリズム心筋細胞と繊毛運動の引き込み 神経系にみるリズム機構 概日リ	
五	ニューサイエンスの方向	26
	生命の階層構造 共時性 情報のホロンとしてのリズム 新しい科	

学の方向性

性(化学物質に対する走性)外部情報による自発性らぎ」・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	A .
する走性	質に対する走性
	らぎ」を作るメカニズム

六 生物行動の確率的性格……………………………………55

細胞レベルにおける生命 小畠陽之助・上田哲男

生体とゆらぎ 五 四 「生きている」とは89 細胞機能の発現と非線形現象……………………………8 振動する化学反応………………………………………………………73 生命のダイナミックス……………………………………61 アメーバ型運動のしくみ 走性の発現 刺激に対する非線形応答 リズムの発現 解糖系における振動 粘菌の生活環と細胞活動 ズムと調節因子 サイクリックAMP合成における振動とマロン酸反応 アメーバ型運動はカオスか 細胞の分裂周期と引き込み 細胞間信号化学物質の働き 粘菌における流動と同期現象 ミトコンドリアにおける振動 形態形成と細胞分化 収縮リ 松本 元 68 63

*熱平衡から遠く離れること=が基本

生物理解への第一歩

139	細胞選別と生物の形	Ξ	
	"生物は確率ではない"「古典発生学とはちがう"流儀』(位置情報を裏付ける分子は存在するか)極座標モデルの考え方)		
126	形態形成の理論的展開に関する問題点	=	
	細胞分化とザボチンスキー反応発生現象のもつ魅力 生物発生のシグナル 遺伝情報のオンとオフ		
117	形態形成のプロセス	_	
	体の形はどのように決まるか 〈対談〉江口吾朗・沢田康次	体の形	
	神経興奮の物理的理解 「生きていること」に対する物理的理解		
109	非平衡系と生体機能	四	
	の二つの安定相 二つの安定相間の転移の様相 説料として好適なヤリイカ イオン濃度差における非平衡環境 膜		
98	神経細胞の電気的興奮現象	Ξ	
	態 かかと循環による「ゆらぎ」の表現 非平衡系における「ゆらぎ」の状		
93	「非線形非平衡系」の特徴	=	

粘着度による細胞種の選別 る六角形パターン いるか 癌の浸潤と絶縁破壊のアナロジー 細胞間の接着機構はどのようになって 上皮の形成と対流にみ

発育とその選択的プロセス 四 形態形成におけるハードとソフト "生物らしさ"を求めて 小 林

152

登

脳・神経にみられる選択的プロセス……………………164 神経系の構造 ーロンの分化過程 「ニューロン死」という選択 ス除去現象 シナプス除去のメカニズム 神経芽細胞の増殖 ニューロンの移動と集合 さまざまなシナプ = ュ

四 三 胸腺にみられる免疫細胞の選択的プロセス………………………………… 細胞レベルにおけるダーウィニズム……………………187 免疫系の機能と構造 Tリンパ球にみられる選択 『個体発生は系統発生をくり返す』 ラマルクとダーウィン 発育に 184 179

みる選択的プロセスの理解

ix 目 次 「意識」とは 生命と「意識」「意識内容」と心

一 生命の設計思想275
生命と寿命 古川俊之
「ゆらぎ」 新しい方法論を求めて「人間のもつ自己矛盾」
システム老化の原因 生体と社会のアナロジー 生物に不可欠な
不可逆現象としてのエイジング 「秩序の固形化」の意味するもの
二 老化の意味を問い直す
視点 DNAレベルにおける老化
期条件の変化 正常な細胞には寿命がある 老化現象のシステム的
は 「プログラムされた死」と進化 発生と老化 細胞分裂にみる初
種によって異なる生きざまと死にざま(クローナル・エイジングと)
一 老化のメカニズムを探る
死はプログラムされているか 〈対談〉 江上信雄・清水 博
化」の相関 「意識転換」のもたらす生き方
「黙照体験」と「意識の転換」 座禅時における「意識転換」と「脳波変
三 座禅のもつ科学性228

タボリズムの低下にみる生と死 クリプトバイオシスとタナトーシ心臓死と脳死 死に至るプロセス 下等動物における死の概念 メー 死の判定は できるか・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	生と死のあいだ(対談)吉利(和・	長寿を作った文明(文明を創った長寿)長寿伝説の村と文明五(文明と寿命・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	型の死亡モード時計仕掛けの発症メカニズム(病気にも寿命がある)一撃型と消四(病気と故障法則・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	死亡率と故障曲線 初期故障 突発故障 摩粍故障三 生命の故障法則	生命侵蝕因子の大きさ 生命のディスポーザブル設計思想 寿命のモンテカルロ・モデルニ 平均寿命の機械論的ダイナミズム	
とタナトーシ 死の概念 メ 301	和	と文明	一撃型と消耗 288	283	ロ・モデル 279	ミッションの

ス

	索	用語		=
口絵 典型的な散逸構造としてのベルーソフ=ザボチンスキー反応	5	用語解説	性 動物は死を理解できるか 死の認識によりもたらされた課題死の自覚と予知 死の文化的背景 健康観とその指標 遺体の尊厳	