Contents

v Preface

Cha	nter	1:	Ion	source	25

1–11 invited	Gas and vapour ion sources for low-energy accelerators G Sidenius
12–17	Molten metal field ion sources R Clampitt and D K Jefferies
18-23	Self-accelerating microwave ion and plasma sources G Mourier, P Boulanger, J Peyraud and J L Delcroix
24–28	Intense halogen negative ion source J Pelletier and C Pomot
29–33	Plasma and beam characteristics of FEBIAD $-$ a low-intensity, high-efficiency ion source $\it R\ Kirchner$
34–39	A highly effective source of inert gas ions T D Radjabov and A G Kadirov
40-43	Duoplasmatron sputter source for multiply charged ions of solids R Keller and M Müller
44–49	A new target ion source system for investigation of short-lived nuclei N Takahashi, T Matsuo, K Miseki and H Matsuda

Chapter 2: Accelerator equipment

50–62 invited	Intense ion beams for implantation R G Wilson
63–69	A new accelerator for multiply charged ions at low energy J G Bannenberg, S Doorn and F W Saris
70–77	A high-current ion source for implantation applications N Williams
78-83	Discharge characteristics and beam quality of a Freeman-type ion source in low-pressure arc operation: applications to ion beam deposition K Miyake, K Yagi and T Tokuyama

viii	Contents
984–89	Ion extraction system of the Kyoto beam-plasma type ion source J Ishikawa, F Sano, H Tsuji and T Takagi
90–95	On the successful upgrading of a 'Scandinavian' low-output isotope separator to an energy of 300 kV A Johansen, K Persson and L Sarholt-Kristensen
96–102	Preparation of sputter electrodes for multiply charged heavy-ion sources K Leible and B H Wolf
103–108	Adaptation of an alkali metal ion source on a low-energy VdG-type electrostatic accelerator M. Lambert, J. P. Thomas and J. P. Buchet
109–116	Energy resolution, stability and calibration of a $400\mathrm{kV}$ implantation-type accelerator studied using (p,γ) nuclear reactions M Croset, D Dieumegard, A Grouillet and G Amsel
(/	Chapter 3: Ion beam detection and applications
117—124	Calorimetric measurements of the neutral beam present in a 500 keV ion implanter PLF Hemment
125–130	Remote ion beam position measurement from random beam modulation MS Hodgart, A Andrews and R W Haining
131–135	A new technique for rapid analysis of light-ion track fields L Faiman
136–141	Low-energy, mass-analysed ion beam deposition K Yagi, K Miyake and T Tokuyama
142-150	Film formation by ionised-cluster beam deposition T Takagi, I Yamada and A Sasaki
151—155	In situ ion etching in a scanning electron microscope and its application to the study of dental restorations R S Dhariwal, P C Ball, E A Marsland and R K Fitch

Chapter 4: Excitation, ionisation and charge transfer

- 156-168 Excited state populations of beams: preparation, measurement and control INVITED HB Gilbody
- 169–174 Highly charged ions: production and charge exchange A Müller and E Salzborn

Contents ix

175–184	Charge transfer cross sections in high-flux, low-energy accelerators K Leyland, D G Armour, G Carter and J H Freeman
185–189	An apparatus for the investigation of the interaction between ion beams and gases M Becker, M Heilgeist and G K Wolf
190–200 invited	Colliding-beam studies of atomic collision processes MF A Harrison
	Chapter 5: Ion beam transport
201–211 INVITED	The role of space charge in beam transport JE Osher
212-221	The ion beam as a drifting gas J D Lawson
222–227	Space-charge neutralisation of ion beams A J T Holmes
228	Ion beam propagation across magnetic fields J T Crow, A T Forrester and D M Goebel
229–235	Properties of an ionised-cluster beam from a vaporised-cluster ion source T Takagi, I Yamada and A Sasaki
236–242	Development of energetic neutral beams to the megawatt power level for controlled thermonuclear research <i>E Thompson</i>
243—248 INVITED	Transport of intense low-energy ion beams PH Rose and DF Downey
•	Chapter 6: Ion optics
249-256 invited	Electrostatic lenses F H Read
257	A low-energy, high-perveance, quiescent ion source A T Forrester, J T Crow and D M Goebel
258–264	Ion optics of the inhomogeneous-field Wien filter: theory and experiment D Ioanoviciu and C Cuna
265	Large, dense and uniform plasma for multi-ampère beam formation: the multiduopigatron C Lejeune, J P Grandchamp and J Aubert

x Contents

266–281 INVITED	Ion optics for surface analysis H Liebl
282–286	Beam emittance of the duoplasmatron as a function of the discharge modes J Aubert, C Lejeune and P Tremelat

Chapter 7: Scattering of ion beams by surfaces

287–297 INVITED	Scattering of ion beams from surfaces W Heiland and E Taglauer
298-304	A $2-100\mathrm{keV}$, UHV ion impact spectrometer for ion—solid interaction studies J A Van den Berg, D G Armour and L K Verheij
305-312	An accelerator system for producing two-component beams for studies of interactive surface effects M. Kaminsky, S. K. Das, R. Ekern and D. C. Hess
313–320	Surface analysis using the double-scattering effect E S Mashkova and V A Molchanov
321	Author Index