CONTENTS

LIST OF	SYMBOLS	χv
1.1. 1.2. 1.3.	ODUCTION Introduction The concept of a beam Some applications of charged-particle beams Notation and style Note on background physics	1 1 4 9 11
2.1. 2.2. 2.3.	OPTICS AND FOCUSING SYSTEMS Introduction Systems with axial symmetry 2.2.1. Introduction; Busch's theorem 2.2.2. The paraxial ray equation 2.2.3. The formation of images; magnification 2.2.4. Some general properties of lenses 2.2.5. Electrostatic lenses 2.2.6. Magnetic lenses 2.2.7. Aberrations in axially symmetrical lenses 2.2.8. Spherical aberration 2.2.9. Chromatic aberration 2.R.2. Notes and references Two-dimensional systems 2.3.1. Strip beams 2.3.2. Strip lenses 2.R.3. Notes and references Systems with two planes of symmetry 2.4.1. Introduction 2.4.2. Quadrupole lenses	13 15 15 18 33 34 45 45 55 55 55 55 56
2.5.		61 62 63 69 73
2.7.	Accelerator orbit theory 2.7.1. Introduction 2.7.2. Alternating gradient ('strong') focusing 2.7.3. The existence of closed orbits; resonances 2.7.4. Momentum compaction and negative mass 2.7.5. Non-linear effects 2.7.6. Azimuthally varying fixed fields 2.7.7. Linear coupling between radial and vertical motion 2.7.8. Betatron with azimuthal magnetic field; an example of strong linear coupling 2.7.9. Coupling arising from non-linearities; a simple example 2.7.10. Trajectories, orbits, and focusing; some general observations 2.8.6.7. Notes and references	76 76 76 80 84 87 91 93 95 97

	2 8	Focusing in fields which vary with time	101		4.3.5.	Linear self-field effects; self-	
	2.0.	2.8.1. Introduction	101			constricted beam	194
		2.8.2. Longitudinal focusing and phase	101		4.3.6.	Equation of Kapchinskij and Vladimirskij	195
			102		4.3.7.	Complete paraxial envelope equation in	
		stability	102			reduced variables	196
		2.8.3. Radial and energy excursions of phase	110		4.3.8.	Non-linear optical systems; emittance	
		oscillations; adiabatic damping	110			growth	197
		2.8.4. Concluding remarks on phase focusing	110		4.3.9.	Systems with non-linear self-field	
		and review of some implicit assumptions	112			forces	203
		2.8.5. Transverse focusing in time-varying			4 R 1-3	Notes and references	203
		fields; application to cyclotron	113	4.4.		distributions	204
		2.8.6. Transverse focusing in linear accele-		7.7.		Introduction; beams and plasmas	204
		rators	114			Pressure, temperature, and emittance	207
		2.8.7. Alternate-phase focusing	116				210
		2.R.8. Notes and references	116			Focused beams with finite temperature	210
					4.4.4.	Matched beam in a uniform external	211
3.	LAMIN.	AR BEAMS WITH SELF-FIELDS	118		4 4 5	linear focusing field	
		Introduction	118			Self-focused beams; the Bennett pinch	214
	3.2.	Characteristics of various types of flow	120		4.4.6.	The planar diode with finite emission	217
	••••	3.2.1. Introduction	120			velocities	217
		3.2.2. Cylindrical beam in an infinite mag-			4.4.7.	Beam in a general linear external	2
		netic field	120			focusing system	219
		3.2.3. The planar diode	125		4.4.8.	Limitations to current density in a	
		3.2.4. Launching a cylindrical beam	129			beam spot arising from thermal velocitie	
		3.2.5. Strip beams	132			at the source	226
		3.2.6. Properties of a beam with no externally	132		4.4.9.	A general survey of factors which limit	
		applied fields	133			spot size	228
		3.2.7. Uniform laminar pinch	138		4.R.4.	Notes and references	233
				4.5.	Ring bea	ams and cylindrical current sheets	234
		3.2.8. Equilibrium of a uniform cylindrical bea				Introduction	234
		in a uniform magnetic field	139		4.5.2.	Ring beam in a betatron field in the	
		3.2.9. Practical neutralized beams	145			absence of walls	235
	5.5.	The paraxial equation for beams with space	7.50		4.5.3.	Ring beam in a betatron field in the	
		charge in axial magnetic fields	150			presence of walls; Q-shifts	241
		3.3.1. Solid beams	150		1 5 A	Cylindrical current sheets	245
	3.4.		152			Adiabatic variation of ring beams and	2.0
		3.4.1. Hollow and planar Brillouin beams	152		4.5.5.	cylindrical current sheets; betatron	
		3.4.2. Elliptical beams and elliptical Brilloui	n			2:1 condition	249
		flow	156		1 E 6	Crossed-field flows	252
		3.4.3. Hollow laminar flows with zero axial					253
		velocity	160	1 6		Notes and references	254
		3.4.4. Laminar flow in a betatron focusing		4.0.		general approach; the Vlasov equation	254
		field	161			Introduction The determination of colf consistent	234
		3.4.5. Electrostatically confined flow	162		4.6.2.	The determination of self-consistent	257
	3.5.		162			equilibria	257
	3.6.		165				
	3.R.		170		4.R.6.	Notes and references	264
	- • • • •					AMERICAN DESCRIPTION	266
4.	NON-L	AMINAR BEAMS WITHOUT COLLISIONS	172	_	_	ATTERING OR DISSIPATION	266
-	4.1.		172	5.1.	Introdu	ction	266
	4.2.		172	5.2.		e scattering of a beam in a background	0 (7
	4.3.		178		gas or		267
		4.3.1. Definition of emittance; brightness	178	5.3.		e scattering in the presence of focusing	271
		4.3.2. Phase-amplitude variables and beam		5.4.		ing between beam particles in storage	
		matching	183		rings		274
		4.3.3. The distribution of Kapchinskij and	200	5.5.	Some pr	operties of a beam with finite	
		Vladimirskij	189		tempera		275
		4.3.4. Phase-amplitude variables in periodic	100	5.6.	The Boe	rsch effect	277
			192			n cooling	281
		systems	1 J 6			-	

хi

CONTENTS

xii CONTENTS

	5.8.	Beams formed from runaway electrons	281
	5.9.	Budker's relativistic self-constricted beam	283
	5.10.	Radiation effects in electron synchrotrons and	
		storage rings	287
	5.11.	Concluding remarks	293
6.		AND INSTABILITIES IN BEAMS	294
	6.1.	Introduction	294
	6.2.	Waves in unbounded plasma	295
		6.2.1. Introduction	295
		6.2.2. Waves in cold stationary plasma	296
		6.2.3. Plasma surface waves	303
		6.2.4. Steady-state properties of a drifting	
		plasma in a stationary neutralizing	704
		background 6 2 5 Longitudinal ways in a cold drifting	304
		6.2.5. Longitudinal waves in a cold drifting plasma	307
		6.2.6. Two or more streaming plasmas	312
		6.2.7. A continuum of plasma streams; Landau	312
		damping	316
		6.R.2. Notes and references	320
	6.3.	Longitudinal waves in beams of finite cross-	
		section	322
		6.3.1. Introduction	322
		6.3.2. Longitudinal waves in a cylindrical	
		beam surrounded by conducting walls	322
		6.3.3. Cylindrical beam with a close-fitting	
		tube in the presence of ions	328
		6.3.4. Cylindrical systems with arbitrary wall	
		impedance and with positive or negative	777
		mass 6.3.5. Note on accelerator notation	333 339
		6.3.6. Cylindrical systems with continuous	333
		velocity distributions and Landau	
		damping	340
		6.3.7. Cylindrical beam weakly coupled to a	
		propagating structure; normal modes	347
		6.3.8. Kinetic power theorem for confined flow	353
		6.3.9. Travelling-wave tube and backward-wave	
		oscillator	358
		6.3.10. Longitudinal beam-plasma interaction	365
		6.R.3. Notes and references	367
	6.4.	Transverse waves	368
		6.4.1. Introduction	368
		6.4.2. Filamentary beams, coherent betatron	370
		oscillations, and cyclotron waves 6.4.3. Behaviour of filamentary waves in a	3/0
		resistive environment	372
		6.4.4. Transverse instability in accelerators	376
		6.4.5. Transverse interaction between beams and	0
		travelling waves; beam 'break-up'	384
		6.4.6. Transverse two-stream instability	384
		6.R.4.1-6. Notes and references	387
		6.4.7. Axially symmetrical transverse waves in	
	•	a paraxial beam	388
		6.4.8. Surface waves on non-vortical beams	393
		6.4.9. Waves on beams with finite vorticity	395

		CONTENTS	xiii			
	6.4.	.10. Multipolar and higher-order transverse	400			
	6.4.	waves .11. Transverse beam-plasma interaction in an	400			
		unbounded plasma	401			
	6.4.	.12. Further discussion of beam-plasma in- teraction	402			
	6.4.	.13. Instabilities arising from shear in	405			
	6 D	laminar beams .4.7-13. Notes and references	405 411			
6.5.	Dvna		411			
0.0.	6.5.	.1. Introduction	411			
	6.5.	.2. Wake fields	414			
		.3. Rigid-bunch approximation	416			
	6.5.	.4. General treatment of bunched-beam in- stabilities	417			
	6 R.	.5. Notes and references	420			
6.6.		cluding remarks	421			
APPENDICES						
Appendix	1.	Fields seen by a particle in a rotating frame in a uniform magnetic field	423			
Appendix	2.	Derivation of the paraxial ray equation from the principle of least action	425			
Appendix	3.	Paraxial equation for a strip beam with curvilinear axes	427			
Appendix	4.	The effect of non-linearities on the period of a harmonic oscillator	430			
Appendix	5.	Coupled-mode theory	432			
Appendix	6.	The energy associated with transverse waves on a filamentary beam	434			
REFERENCES						
INDEX			456			