CONTENTS

1.	Introduction—Fundamentals on the Corona Phenomenon and	
	Spectrum of Applications	. 1
	Introduction	
	Corona in Context	
	Physical Description of the Corona Phenomenon	
	Mathematical Description of the Corona Phenomenon	
	Ionization Coefficient	13
	Configurations and/or Devices	
	Spectrum of Applications	
	Patent Survey	
_	•	33
2.	Values Added to Polymeric Surfaces by Low-Temperature	
	Plasma Discharges	37
	Introduction	37
	Treatment of Organic Polymers by Nonpolymer-Forming	
	Plasmas	38
	Plasma Polymerization	56
3.	Organic Synthesis Through the Effect of Singlet Molecular	
	Oxygen	67
	Introduction	67
	Properties of Singlet Molecular Oxygen	68
	Methods for Generation of Singlet Oxygen	69
	Reactions of Singlet Oxygen with Organic Substances	72
	Role of Singlet Oxygen in Polymer Degradation	75
	Improving Self-Adhesion of Synthetic Tire Rubber by Means	
	of a Singlet Oxygen Reaction	78
	Application of Knowledge on Singlet Oxygen Reactions in	
	the Paper and Pulp Industry	78
	Potential Applications of Singlet Oxygen	79
	Research Areas Currently Active in Singlet Molecular	
	Oxygen Science	79

4.	Investigations on Applications of Low-Temperature Plasmas
	to Organic Synthesis
	Introduction
	Generation of Atomic Gases and Their Reaction with
	Organic Compounds
	Isomerizations, Including Migration of Substituents and
	Rearrangement of Cyclic Compounds 82
	Eliminations, Including Stabilization of Products by
	Cyclization
	Bimolecular Reactions
	Prospects for Synthesis Applications
	Volume and Growth of the Low-Temperature Plasma
	Device Industry
5.	Survey of Patents in Low-Temperature Plasmas 91
	Survey of Patents: (Corona Effect) Equipment/Procedures 92
	Survey of Patents: (Corona Effect) Organic Synthesis101
	Survey of Patents: Surface Modification (Photography,
	Xerography, Printing)106
	Survey of Patents: Surface Modification (Semiconductors) 111
	Survey of Patents: Surface Modification (Textiles, Fibers,
	Polymers)
	Survey of Patents: Surface Modification (Metals)
	Survey of Patents: Environmental Protection
	Survey of Patents: Other Applications
D.	ferences
Ke	
Ind	lex