Contents

1.	INT	RODUCTION	1
	1.1	Definition of a plasma	1
	1.2	Important characteristics	2
	1.3	Short survey of the applications of plasma physics	2 6
	1.4	Interactions between particles	8
	1.5		12
	1.6		14
	1.7	Energy dependences of scattering cross-sections	15
		Distribution of particle velocities	18
		Transport parameters	20
		Thermodynamics of gases	25
		rences and bibliography	28
2.	FUN	IDAMENTAL PLASMA PROCESSES	30
	2.1	Particle orbits in electric and magnetic fields	30
	2.2	Adiabatic invariants	33
	2.3	Elastic collisions	36
	2.4	Inelastic collisions	40
	2.5	Mobility of charge carriers moving in a gas	48
	2.6	Diffusion and ambipolar diffusion	50
	2.7	Generation and excitation of charge carriers in a gas	53
		Annihilation of charge carriers in a gas	55
	2.9	Wall and electrode effects	57
	2.10	Creation of a plasma	60
	Refe	rences and bibliography	63
3.	PLA	SMA EQUATIONS	66
	3.1	Maxwell's equations	66
	3.2	Liouville's theorem	68
	3.3	Boltzmann's equation	70
	3.4	Macroscopic relations	74
	3.5	Continuity equation	76
	3.6	Momentum transport equation	78
	3.7	Energy conservation equation	80

CONTENTS			CONTENTS
3.8 Boltzmann's equation treatment of diffusion and mobility3.9 Fully ionised plasmas3.10 The MHD approximationReferences and bibliography	84 86 89 92	 7.5 Open thermonuclear systems 7.6 Closed thermonuclear systems 7.7 Fusion reactors 7.8 Energy production 	200 21' 22' 22'
 4. RADIATIONS AND WAVES IN PLASMAS 4.1 Radiations in a plasma 4.2 Plasma sheaths 	94 94 98	7.9 Thermonuclear power plants7.10 Future trendsReferences and bibliography	230 231 232
4.3 Plasma oscillations4.4 Electroacoustic waves4.5 Electromagnetic waves	100 102 105	8. MAGNETOHYDRODYNAMIC APPLICATIONS 8.1 Introduction	23: 23: 23'
4.6 General theories of electromagnetic waves4.7 Wave damping	110 111	8.2 MHD power generation8.3 MHD a.c. power generation8.4 MHD propulsion	244 247
4.8 Beam-plasma interaction4.9 Plasma-plasma interaction4.10 Shock waves	115 118 120	8.5 Plasma torch and rockets8.6 MHD pumps8.7 MHD amplification	253 256 258
References and bibliography 5. PLASMA INSTABILITIES AND TURBULENCE	123 125	8.8 MHD lubrication8.9 MHD thermal convection	260 262
5.1 Plasma equilibrium5.2 The magnetohydrodynamic (MHD) approximation	125 125 128	8.10 MHD stirring References and bibliography	264 265
5.3 Energy principle5.4 The wave approach5.5 The Boltzmann equation approach	129 132 133	9. THERMIONIC APPLICATIONS 9.1 Introduction 9.2 Thermionic emission analysis	267 267 268
5.6 Classification of plasma instabilities5.7 Instability and turbulence	133 136 143	9.3 Vacuum tubes9.4 Gas-filled tubes	271 276
5.8 Quasi-linear approximation of turbulence	146	9.5 Thermionic converters	279

5.8 Quasi-linear approximation of turbulence	146	9.5 Thermionic converters	279
5.9 Weak turbulence	150	9.6 Magnetic triodes	287
5.10 Strong turbulence	153	9.7 The plasmatron	290
References and bibliography	156	9.8 The Q-machine	291
		9.9 Generation of radio-frequency energy	294
6. PLASMA DIAGNOSTIC METHODS	159	9.10 Thermionic amplifiers	295
6.1 Introduction	159	References and bibliography	297
6.2 Optical methods	160	40	200
6.3 Spectroscopic methods	164	10. MASERS AND LASERS	299
6.4 Electrostatic and magnetic probes	166	10.1 Introduction	299
6.5 Cavity perturbation method	173	10.2 Electromagnetic wave generators	300
6.6 Microwave propagation techniques	175	10.3 Emission of radiation	304
6.7 Dipole resonance methods	178	10.4 Amplification of radiation	308
6.8 Shock tube measurements	180	10.5 Paramagnetism and Bloch equations	311
6.9 Laser techniques	183	10.6 Masers	314
6.10 Miscellaneous diagnostic methods	187	10.7 Lasers	319
References and bibliography	191	10.8 Material considerations	323
		10.9 Applications of the maser	324
7. THERMONUCLEAR FUSION	194	10.10 Applications of the laser	325
7.1 Introduction	194	References and bibliography	329
7.2 Conditions for thermonuclear fusion	195	11 COLID STATE DI ASMAS	221
7.3 Plasma discharges	200	11. SOLID-STATE PLASMAS 11.1 Introduction	331
7.4 Plasma confinement	204		331
		11.2 Solid-state physics	332

CONTENTS

	11.3	Motion of charge carriers in the absence of scattering Motion of charge carriers in the presence of scattering	334
		Generation and annihilation of charge carriers	339
÷.,			340
	11.0	Collective phenomena	346
		Specific characteristics of solid-state plasmas	349
1		Waves in solid-state plasmas	351
	11.9	Non-equilibrium solid-state plasmas	358
		Possible engineering applications	359
	Refer	ences and bibliography	364
12.	ASTR	OPHYSICS AND SPACE SCIENCES	366
	12.1	Introduction	366
	12.2	The earth's atmosphere	366
		The ionosphere	370
		The earth's radiation belts	375
		The magnetosphere and the solar wind	379
	12.6	Solar physics	382
		The solar system	390
		The milky way	392
		The world of galaxies	
	12.7	Evolution of the universe	394
			395
	Kelel	ences and Bibliography	397
	GLOS	SSARY OF SYMBOLS USED	399
	PROF	BLEMS	404
	INDE	$\mathbf{z}\mathbf{x}$	425