Contents

Preface	v
1. The Physical Characteristics of Electric Discharges Alexis Bell, Department of Chemical Engineering, Massachusetts Insti- tute of Technology	1
1.1. Introduction	1
1.2. Direct-Current Discharges	2
1.3. High-Frequency Discharges	9
2. Techniques for the Generation of Continuous	

	High-Temperature Gas Flows Richard R. John, AVCO Space Systems Division, Research and Tech- nology Laboratories			
	2.1. 2.2. 2.3. 2.4.	Introduction Joule-Heating Energy-Transfer Processes	13 14 22 24	
3.		emical Uses of Induction Plasmas mas B. Reed, Lincoln Laboratory, Massachusetts Institute of Tech- gy	26	

3.1.	Plasma Chemistry	26
3.2.	Induction Plasma Generation	28
3.3.	Comparison of Induction and Electrode Plasma Generation	30
3.4.	Gas-Solid Reactions	30
3.5.	Gas-Phase Reactions	32

xv

Contents xvi 4. Chemical Syntheses in Radio-Frequency Plasma Torches 35 Claude P. Beguin, James B. Ezell, Antonio Salvemini, James C. Thompson, David G. Vickroy, and John L. Margrave, Department of Chemistry, Rice University 35 4.1. Introduction 36 4.2. Design of the Plasma Torch 37 4.3. Diameter of the Discharge 4.4. Diameter of the Tube 40 41 4.5. Initiation of the Discharge 4.6. The Generator and Its Match with the Load 42 43 4.7. Measurement of the Power Delivered to the Plasma 4.8. Design of the Plasma Reactor 44 4.9. Synthesis of NO 46 49 4.10. Preparation of Chlorofluorocarbons 54 5. Plasma Diagnostics J. Charles Ingraham and Sanborn C. Brown, Physics Department, Massachusetts Institute of Technology 5.1. Microwave Plasma Diagnostics 54 82 5.2. General Plasma Diagnostic Techniques 87 6. Chemical Reactions in a Microwave Discharge Raymond F. Baddour and Peter H. Dundas, Department of Chemical Engineering, Massachusetts Institute of Technology 6.1. Introduction 87 88 6.2. General Considerations 6.3. Application of Microwave Techniques 90 90 6.4. Mechanism of Microwave Discharge 6.5. Conditions for a Cold Plasma 92 92 6.6. Chemical Rearrangements and Syntheses 96 6.7. General Discussion 99 7. Nitrogen Fixation Robert S. Timmins and Paul R. Ammann, Avco Corporation 99 7.1. Introduction 100 7.2. Nitric Oxide 111 7.3. Hydrogen Cyanide 119 7.4. Cyanogen 124 7.5. Arc Operation 127 7.6. Process Applications

Appendix

		Contents	xvii
8.		ction of Graphite and Hydrogren Above 2000°K T. Clarke, Brookhaven National Laboratory	132
	8.1.	Introduction	132
	8.2.	Thermodynamic Calculations of the Equilibrium of Carbon and Hydrogen	133
	8.3.	Equilibration in the Graphite-Hydrogen System	139
	8.4.	Experimental Work on the Reaction of Graphite and Hydrogen	140
	8.5.	Work Applicable to the Determination of the Equilibrium Com-	
		position	140
	8.6.	Work Applicable to the Kinetics of the Reaction of Graphite	
		and Hydrogen	146
	8.7.	Mechanism of the Reaction of Vaporized Graphite with Hydrogen	152
	8.8.	An Application of Graphite Filament Studies to the Production of	
		Acetylene	154
9.	Fluo	rine Reactions in Plasma	157
•		R. Bronfin, Research Laboratories, United Aircraft Corporation	
	9.1.	Introduction	157
	9.2.	Fluorocarbon Synthesis in a High-Intensity Arc	160
	9.3.	Nitrogen Fluoride Synthesis in a Plasma Jet	171
	9.4.	Fluoride Syntheses in Electric Discharges	184
	9.5.	Future Work	194

	_	-	
1	n	C	ex

128

201