The Institution of Electrical Engineers is not, as a body, responsible for the opinions expressed by individual authors or speakers

Contents

This volume contains contributions included in the following sessions of the Conference:

ARC INTERRUPTION
CORONA
COMPRESSED GAS INSULATION

Part 2 contains contributions included in the following sessions of the Conference:

GLOWS AND PRE-BREAKDOWN PHENOMENA PLASMA TECHNOLOGY BREAKDOWN TEST TECHNIQUES AND DIAGNOSTICS

- Page No. 168 M S Abou-Seada and Kh I M Ali

 Negative corona thresholds of compressed SF₆ in space charge modified nonuniform fields
 - 274 T W Aitken
 Construction of a 30 MV DC generator using 150 tonne SF₆
 - 122 N L Allen, D Dring and S Burger
 The influence of humidity on positive impulse corona in a rod/plane gap
 - 150 N L Allen, Y Teisseyre, P Ballereau and M Goldman
 Electrical wind and ionic species formed by point-plane corona
 - 220 H Anis and K D Srivastava
 Generalized breakdown criteria for particle-contaminated sulphur hexafluoride under DC, AC and impulse voltages
 - 130 I Arima and T Watanabe Study of audible noise and radio noise using corona pulse distribution characteristics
 - 165 A G Arson and I M Bortnik Mobility of ions in SF₆
 - 67 E I Asinovsky, A A Afanasjev, E P Pakhomov and V K Roddatis
 Application of screw quenching arc in high-voltage electromagnetic switchgear

Page No.	134	P B Barber, D L V Couchman, A G Morris and D A Swift Audible noise and electromagnetic radiation emitted by AC corona discharges from water droplets
	251	M Beyer and R Brockmann Flashover voltage of epoxy resin spacers with defined high resistive contaminations
	21	J Blackett, J R Bagshaw and A G Hawkins The effect of current on gas flow and performance of an experimental SF ₆ interrupter
	208	V N Borin and I M Bortnik Dielectric coatings for gas-insulated high-voltage equipment
	110	A Boulloud and J Charrier Current density on the plane electrode of a positive point-to-plane glow corona discharge
	158	A Brunet and F Faure Negative corona discharges upon electrodes made of carbon fibers materials
	17	L C Campbell Nozzle clogging and its effect on the current zero region
	266	F Y Chu and C K Law Effects of power arc in gas insulated equipment
	210	G C Crichton and A Pedersen Anomalous surface roughness effects in SF ₆
	138	A J Davies and K E Donne Trichel pulse corona in low pressure carbon dioxide
	71	H Dienemann SF ₆ high current discharge
	188	G Dreger The connection between breakdown-volume and statistical time lag at impulse voltage stress in SF ₆
	204	J Dutton and W T Williams Effect of the cathode surface on the electrical breakdown in SF ₆ at high pressures

Page No.	41	M T C Fang, S Ramakrishnan and H K Messerle Scaling laws for gas-blast circuit-breaker arcs
	114	Y Gosho Development of positive streamer corona in air due to nitrogen oxide produced by its own discharge
	<i>255</i>	R Gös Surface discharges in compressed SF ₆ at the state of condensation
	142	D Graf A simulation model of the negative corona discharge
	52	B K Hasan and D M Grant Arc interruption in SF ₆ mixtures
	98	C Heuser and G Pietsch Prebreakdown phenomena between glass-glass and glass-metal electrodes
	126	F G Heymann The effect of corona on travelling waves up to 450 kV on an 11 kV test power line
	161	O E Ibrahim and O Farish Negative-point breakdown and prebreakdown corona processes in $\rm SF_6$ and $\rm SF_6/N_2$ mixtures
	118	K Kondo and N Ikuta Fine structure of the positive streamer corona and its propagation mechanism
	91	S K Kwan The discharge process and efficiency of ozonizer
	240	J R Laghari and A H Qureshi Flashover voltages of cylindrical insulators in gas mixtures
	<i>37</i>	J L Leclerc, M R Smith and G R Jones

Thermal area and pressure variations at extra high current levels in

59 A Lee and L S Frost Arc interruption of pure ${\rm CCIF}_2$ ${\rm CF}_3$ and its mixture with ${\rm SF}_6$

a model circuit breaker

Page No.	86	J L Linsley Hood The corona discharge treatment of plastics films
	270	F Lutz and G Pietsch Investigation on the pressure rise in the surroundings of a high-current fault arc
	236	N H Malik, A H Qureshi and T Szweicer Electrode surface roughness and SF ₆ — gas mixtures
	213	C Masetti, A Pigini and B Parmigiani Influence of electrode characteristics on SF ₆ corona inception conditions
	153	J W Mason and B Young Statistical properties of negative corona pulse sequences
	180	R J Meats Long times to breakdown in SF ₆
	63	J Mentel and H G Hülsmann Theoretical investigations of the interaction between gas flow and arc in a double nozzle system
	33	K G Mnatsakanian, V P Kuritsin, K I Seryakov and V S Chemeris Behaviour of arc in between nozzle and downstream electrode in SF ₆ puffer circuit-breaker
	13	R Moll and E Schade Dielectric recovery of axially blown SF ₆ -arcs
	<i>78</i>	M Nagata, I Miyachi, Y Yokoi and K Isaka Breakdown characteristics of high temperature air and SF ₆ gas
	29	Y Nakagawa, M Tsukushi, K Hirasawa and Y Yoshioka Nozzle clogging phenomena and interrupting ability of puffer type gas blast circuit breakers
	192	K Nakanishi, A Yoshioka and Y Shibuya Statistical breakdown characteristics of a gas insulated bus
	<i>55</i>	L Niemeyer and A Plessl The influence of flow geometry on gas blast arc interruption

Ü	Characteristics of electrical breakdown in SF ₆ gas in short gaps by sharp rise pulses
232	R Y Pai, L G Christophorou, I Sauers and A Fatheddin Measurement of properties of perfluorocarbon/SF ₆ mixtures relevant to applications
243	W Pfeiffer and P Völker DC and AC voltage strength of thermoplastic spacers in SF ₆
217	W Pfeiffer and P Völker Discharge formation in SF ₆ for impulse voltage stress
49	L W Rothhardt Peculiarities of electrical breakdown tests behind the reflected shock wave in a shock tube (in hot air and nitrogen)
184	$H\ M\ Ryan$, $T\ Harris\ and\ J\ Nixon$ Further breakdown characteristics in ${\rm SF_6}$ and ${\rm SF_6/N_2}$ mixtures
196	B B Saha and J M K Pratt The effect of regular electrode surface roughness on the breakdown strength of compressed SF ₆

146 E O Selim and R T Waters

176 N Okumura and Y Inuishi

Page No.

Electrical characteristics of negative rod/plane corona in air at atmospheric pressure and below

J Salge, H Kärner, M Labrenz, K Scheibe and P Braumann Characteristics of ozonisers supplied by fast rising voltages

- 82 R S Sigmond, A Goldman and D Brenna
 Corona corrosion of aluminium in air: electrochemical interaction
 between electrical coronas and metal surfaces
- 25 C F Sölver Thermal limiting curves of full size puffer interrupters. Pure $\rm SF_6$ and mixture $\rm SF_6/N_2$
- 102 E Steinort, A Leschanz[†] and G Malin
 Investigations on the inception and the discharge ranges of external
 partial discharges (corona) in air

1 A D Stokes

Page No.

	Gas blast arc interruption and low current arc behaviour in SF ₆
5	K Suzuki, A Kobayashi, S Yanabu and H Ikeda Post-arc performance of gas blast circuit breaker for air and SF ₆
172	\ensuremath{W} Taschner Dependency of V-T-curves on the front steepness of testing voltage in SF ₆ , measuring method and definitions
45	${\it H~G~Thiel~and~J~Wagner}$ Physical mechanisms affecting the transient response of ${\it SF}_6$ and air blast arcs
263	V N Varivodov, A A Panov, V M Kochetygov and I G Tripoten New developments in 500 kV gas insulated cables
106	IP Vereshchagin, G T Golovin, V E Litvinov and A F Artamonov Numerical method of field calculation at a unipolar corona discharge
259	V P Vertikov and A A Panov Flashovers over the surface of insulators in SF ₆ DC apparatus
278	S Vibholm and J Mollerup On the compressibility factor for SF ₆
224	A L Vilenchuk, I V Pankratova and V G Titkova Investigation of interaction of electromagnetic field with conducting particles in SF ₆ filled apparatus
200	A E Vlastós and S Rusck Influence of the electrode surface state on the breakdown of pressurized SF ₆
247	H-J Voss The flashover of spacer surfaces in SF ₆ caused by conducting particles under oscillating switching impulse voltage
<i>75</i>	H A Woods and P R Smy The arc-supported boundary layer
228	R E Wootton and S J Dale 60 Hz breakdown characteristics of SF ₆ and its mixtures with CF ₃ SF ₅ , CF ₃ CFCF ₂ and He in non-uniform fields

Small DC current breaking phenomena of air blast circuit breaker

9 S Yanabu, S Nishiwaki, H Ikeda and T Horiuchi