Contents

1. INTRODUCTION: DEFINITIONS, GAP FORMS, BASIC	
MECHANISMS, AND FUNDAMENTAL RELATIONS	1
A. INTRODUCTION	I
1. General Considerations Typifying Corona Breakdown	I
2. Difficulties Inherent in Studies Before the Fast Cathode	
Ray Oscilloscope	3
3. General Properties and Behavior of Coronas; Thresholds	
and Definitions	4
4. Initiating or Triggering Electrons	6
5. Visual Appearances of Coronas	8
B. AXIAL FIELD CALCULATIONS FOR VARIOUS GAP FORMS	10
1. Coaxial Cylindrical Condenser	10
2. Confocal Paraboloids	11
3. Hyperboloid of Revolution Opposite a Plane	II
4. Sphere to Plane and Concentric Spherical Gaps	11
5. Field Along the Axis for the Hemispherically Capped Cyl-	
inder Against an Infinite Plane	12
2. FUNDAMENTAL DEFINITIONS AND RELATIONS	
PERTINENT TO ELECTRICAL BREAKDOWN	15
A. FUNDAMENTALS OF ELECTRICAL CARRIERS IN GASES	15
B. BASIC INTERACTION OF IONS, METASTABLES, AND ATOMS	19
	xiii

. .

xiv CONTENTS

C. IONIZATION BY COLLISION, ELECTRON AVALANCHES,	
AND SECONDARY ACTIONS	22
D. Field Intensified Currents and Breakdown Thresholds	26
E. Evaluation of the Townsend Integral, Space Charges	
and Polarity, and the Influence of Space Charges	
on Breakdown	30
1. Lowered Potential in Uniform Field Geometry	31
2. The Townsend Integral for Avalanches in Non-Uniform	
Fields	32
3. Ionization Characteristics for the Highly Stressed Anode	
and Cathode	34
4. Negative Ion Space Charges	40
5. Effective Calculable Ion Space Charge Distortion in Coaxial	
Cylinders; The Space Charge Controlled Current-Potential	
Curve	42
6. Current Increase at Constant Potential Across the Ionizing	
Zone	46
F. THE EQUIPOTENTIAL LINES AND THE PHYSICAL FORM	
OF THE DISCHARGE	47
G. BASIC THEORY OF BREAKDOWN MODES AT ISOLATED,	
Highly Stressed Anodes Due to Photoelectric	
IONIZATION IN THE GAS; BURST PULSES AND STREAMERS	51
1. Introduction	51
2. Conditions Leading to Burst Pulses and Pre-Onset Streamer	
Pulses	53
3. The Burst Pulse or Pseudo Geiger Counter Pulse and	
Geiger Pulse Thresholds	54
4. The Streamer Pulse Threshold	65
3. TRUE CORONAS: I. THE HIGHLY STRESSED POSITIVE	
ELECTRODE WITH NEGLIGIBLE CATHODE INFLUENCE	74
A. Electron Attaching Gases, Notably Air or O_2	74
1. Early Observations of Burst Pulses and Streamer Pulses	74

CONTENTS	xv
2. Kip's Initial Studies	75
3. The Stable Glow Regime with Negative Ions	86
4. Further Studies of Burst Pulses and Streamers; Work of	
English, Moore, and Bandel	98
5. Studies of Burst Pulses with Oscilloscopes of High Resolving	
Power; Work of Amin	112
6. Streamer Pulses with Fast Oscilloscope and Photomultiplier;	
Amin's Work	123
7. Breakdown Streamers Leading to a Transient Arc via the	
Filamentary Spark	131
a. Pre-World War II Formulations and Concepts	131
b. Observations of Meek and Saxe; The Streamer Channel	141
c. Significance of the Uniform Field Studies of Fisher	
and Bederson; Space Charge Stimulation of Streamer	
Breakdown	149
d. Fast Oscilloscopic and Photomultiplier Studies of	
Breakdown Streamers by Hudson	152
8. Streamer Studies with Impulse Potentials Using Lichten-	
berg Figure Techniques; The Studies of Nasser	168
9. The Influence of the Concentration of O_2 and H_2O on	
Streamer Advance; The Work of Waidmann	210
10. Static and Impulse Breakdown Values as a Function of	
Percentage of O_2	222
11. The Influence of H_2O Vapor on Streamers and Sparks	
in Air	225
12. Przybylski's Studies of Photoionizing Radiations	227
13. The Observed Data on Avalanche Size for Breakdown	
Streamers; Work of Raether's School	230
14. Spectra of Streamers	234
Spark-Suppressing Gases—Freon and Freon-Air	
Mixtures	237
CORONA FROM WATER AND ICE POINTS	248
1. Corona from Water Points	248
2. Corona from Ice Points	266

в.

С.

xvi CONTENTS

D. TIME LAGS IN POSITIVE POINT CORONA	269
E. FREE ELECTRON GASES	275
1. Introduction	275
2. Weissler's Studies; Pure H_2 , N_2 , and A	277
a. Techniques of Weissler	277
b. Results in Pure H_2	278
c. Results in Pure A	279
d. Results of the Influence of H_2 , N_2 , and O_2 on the	
Corona in A	280
e. Results in Pure N_2	282
f. Results of Das on Ne and Ne-A Mixtures	283
F. Streamer Breakdown in Pure Single Component Gases;	
THE WORK OF WESTBURG AND HUANG ON A	285
4. TRUE CORONAS: II. THE HIGHLY STRESSED CATHODE	
WITH ANODE PLAYING A MINOR ROLE	299
A. Electron Attaching Gases, Notably Air or Those	
Containing O2; The Trichel Pulse Corona	299
1. Early Studies of Trichel, Kip, and Hudson	299
2. Theoretical and Post-World War II Studies; Contributions	
of Loeb and English; Relative Starting Potentials	310
3. Bandel's Comprehensive Study in Standard Geometry	327
4. The Short Time Duration of the Pulse and Negative Ion	
Formation	333
5. The Fast Oscilloscopic Analysis of Trichel Pulses by	
Amin	335
6. Studies of Guck and Das	347
B. FREE ELECTRON GASES	359
1. Introduction	359
2. Weissler's Studies in Pure Gases	362
a. Hydrogen	363
b. Pure Nitrogen	365
c. Pure Argon	366
d. Sputtering or Etching of the Cathode	368

)

CONTENTS	xvii
3. Studies of Das	368
4. Negative Point Breakdown Streamers; Studies of Nasser	-
and Adipura	372
C. The Extensive Studies of Miyoshi in Air	383
D. The Electrical Wind	402
5. ASYMMETRICAL GAPS WITH BOTH ELECTRODES	
PARTICIPATING; PSEUDO CORONAS; COAXIAL	
CYLINDRICAL GEOMETRY; HIGHLY STRESSED ANODE	408
A. FREE ELECTRON GASES	408
1. Introduction	408
2. Miller's Studies in Pure N_2	409
3. Lauer's Study with Controlled Electronic Triggering	416
a. Techniques and Principles	416
b. H_2 Gas	420
c. A Gas	424
d. Colli and Facchini's Clarification of Discrepancies	425
e. Effects of O_2	429
4. Huber's Study in N_2 and O_2	433
B. Electron Attaching Gases, Notably Air and O_2	439
1. Introduction	439
2. Miller's Study in N_2 - O_2 Mixtures and in O_2	440
3. Huber's Study with α Particle Triggering; Measurements	
in O_2	447
4. Photomultiplier Studies of the Burst Pulse Spread Down	
the Wire and Its Relation to Geiger Counter Action	453
C. The Physics of the Geiger Counter	469
1. Introduction	469
2. The Quantitative Theory of Geiger Counter Action and	
Spread	472
3. The Counter as a Counting Mechanism	493
4. Requirements for a Good Counter	499
5. Halogen-Filled Counters	502

xviii CONTENTS

IN COAXIAL CYLINDRICAL GEOMETRY AND RELATIVE THRESHOLD POTENTIALS FOR POSITIVE AND NEGATIVE POLARITY 51 A. THE HIGHLY STRESSED CATHODE IN FREE ELECTRON GASES 51 1. Introduction 51 2. Miller and Lauer's Observations on Free Electron Gases 51 a. Clean N ₂ Gas 51 b. H ₂ and A 52 B. HIGHLY STRESSED CATHODE IN ELECTRON ATTACHING GASES 52 2. Miller's Data for N ₂ with 1% O ₂ 53 2. Miller's Data in Air 52 3. Miller's Data in Pure O ₂ 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER OF THE INITIAL BREAKDOWN 5 1. Corona Thresholds in Point-to-Point Gaps 5 2. Spark Breakdown in Point-to-Point Gaps 5 5 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 5 1. Introduction 5 2. The Influence of Frequency 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenom- ena, and Radio Interference 5 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential	6. THE HIGHLY STRESSED CATHODE, PSEUDO CORONAS,	
THRESHOLD POTENTIALS FOR POSITIVE AND NEGATIVE 51 A. THE HIGHLY STRESSED CATHODE IN FREE ELECTRON GASES 51 1. Introduction 51 2. Miller and Lauer'S Observations on Free Electron Gases 51 a. Clean N2 Gas 51 b. H2 and A 52 B. HIGHLY STRESSED CATHODE IN ELECTRON ATTACHING GASES 52 1. Miller's Data for N2 with 1% O2 52 2. Miller's Data in Air 53 3. Miller's Data in Pure O2 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE 53 AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 55 OF THE INITIAL BREAKDOWN 53 1. Corona Thresholds in Point-to-Point Gaps 53 2. Spark Breakdown in Point-to-Point Gaps 55 3. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 54 ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 55 1. Introduction 55 2. The Influence of Frequency 55 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomenena, and Radio Interfer	IN COAXIAL CYLINDRICAL GEOMETRY AND RELATIVE	
POLARITY 51 A. THE HIGHLY STRESSED CATHODE IN FREE ELECTRON GASES 51 1. Introduction 51 2. Miller and Lauer's Observations on Free Electron Gases 51 a. Clean N2 Gas 51 b. H2 and A 52 B. HIGHLY STRESSED CATHODE IN ELECTRON ATTACHING GASES 52 1. Miller's Data for N2 with 1% O2 52 2. Miller's Data in Air 53 3. Miller's Data in Pure O2 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE 53 AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 53 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 53 I. Corona Thresholds in Point-to-Point Gaps 53 C. SPHERE-TO-SPHERE GAPS 54 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 51 S. The AC Behavior in Asymmetrical Gaps, Corona Phenomenea, and Radio Interference 52 O. The Influence of Frequency 53	THRESHOLD POTENTIALS FOR POSITIVE AND NEGATIVE	
A. THE HIGHLY STRESSED CATHODE IN FREE ELECTRON GASES 51 1. Introduction 51 2. Miller and Lauer's Observations on Free Electron Gases 51 a. Clean N2 Gas 51 b. H2 and A 52 B. HIGHLY STRESSED CATHODE IN ELECTRON ATTACHING GASES 52 1. Miller's Data for N2 with 1% O2 53 2. Miller's Data in Air 53 3. Miller's Data in Pure O2 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE 53 AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 54 A. Gap FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 51 I. CORONA THRESHOLDS IN POINT-to-POINT GAPS 53 Q. Spark Breakdown in Point-to-Point Gaps 53 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 53 ASYMMETRICAL FIELDS WITH ALITERNATING POTENTIALS 51 I. Introduction 52 2. The Influence of Frequency 53 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 54	POLARITY	512
1. Introduction 51 2. Miller and Lauer's Observations on Free Electron Gases 51 a. Clean N2 Gas 51 b. H2 and A 52 B. Highly Stressed Cathope in Electron Attaching Gases 52 1. Miller's Data for N2 with 1% O2 52 2. Miller's Data in Air 53 3. Miller's Data in Pure O2 52 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE 53 AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 55 D. THE INITIAL BREAKDOWN 51 1. Corona Thresholds in Point-to-Point Gaps 52 2. Spark Breakdown in Point-to-Point Gaps 55 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 51 1. Introduction 52 2. The Influence of Frequency 52 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 55 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 55 <td>A. The Highly Stressed Cathode in Free Electron Gases</td> <td>512</td>	A. The Highly Stressed Cathode in Free Electron Gases	512
2. Miller and Lauer's Observations on Free Electron Gases 51 a. Clean N2 Gas 51 b. H2 and A 52 B. HIGHLY STRESSED CATHODE IN ELECTRON ATTACHING GASES 52 1. Miller's Data for N2 with 1% O2 52 2. Miller's Data in Air 53 3. Miller's Data in Pure O2 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE 53 AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 55 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 5 1. Corona Thresholds in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 5 1. Introduction 5 2. The Influence of Frequency 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomenna, and Radio Interference 5 4. Threshold for Symmetrica	1. Introduction	512
a. Clean N2 Gas 51 b. H2 and A 52 B. HIGHLY STRESSED CATHODE IN ELECTRON ATTACHING GASES 52 1. Miller's Data for N2 with 1% O2 52 2. Miller's Data in Air 53 3. Miller's Data in Pure O2 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE 53 AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 55 2. Spark Breakdown in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 3. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 51 1. Introduction 52 2. The Influence of Frequency 53 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 54 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 55 5. Threshold for Symmetrical and Asymmetrical Corona G	2. Miller and Lauer's Observations on Free Electron Gases	515
b. H ₂ and A 52 B. HIGHLY STRESSED CATHODE IN ELECTRON ATTACHING GASES 1. Miller's Data for N ₂ with 1% O ₂ 53 2. Miller's Data in Air 54 3. Miller's Data in Pure O ₂ 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER OF THE INITIAL BREAKDOWN 5 1. Corona Thresholds in Point-to-Point Gaps 5 2. Spark Breakdown in Point-to-Point Gaps 5 3. Symmetrical Fields and Alternating Potentials 5 1. Introduction 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenom- ena, and Radio Interference 5 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 5	a. Clean N_2 Gas	515
B. Highly STRESSED CATHODE IN ELECTRON ATTACHING GASES 52 1. Miller's Data for N2 with 1% O2 52 2. Miller's Data in Air 53 3. Miller's Data in Pure O2 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE 53 AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 55 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 54 1. Corona Thresholds in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 3. I. Corona Thresholds in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 3. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 3. I. Introduction 51 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomennena, and Radio Interference 52 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 54 5. Threshold for Symmetrical and Asymmetrical Corona Gaps	b. H_2 and A	522
1. Miller's Data for N2 with 1% O2 53 2. Miller's Data in Air 53 3. Miller's Data in Pure O2 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE 53 AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 54 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 55 1. Corona Thresholds in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 1. Introduction 55 2. The Influence of Frequency 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomennera, and Radio Interference 55 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 55	B. Highly Stressed Cathode in Electron Attaching Gases	525
2. Miller's Data in Air 53 3. Miller's Data in Pure O2 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE 53 AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 54 1. Corona Thresholds in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 1. Introduction 52 2. The Influence of Frequency 53 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 55 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 54	1. Miller's Data for N_2 with 1% O_2	525
3. Miller's Data in Pure O2 53 C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE AND NEGATIVE CORONAS AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 55 1. Corona Thresholds in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 1. Introduction 51 2. The Influence of Frequency 52 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomenna, and Radio Interference 55 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 54	2. Miller's Data in Air	528
C. RELATIVE THRESHOLD POTENTIALS OF POSITIVE AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 55 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER OF THE INITIAL BREAKDOWN 5 1. Corona Thresholds in Point-to-Point Gaps 5 2. Spark Breakdown in Point-to-Point Gaps 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3. Miller's Data in Pure O_2	532
AND NEGATIVE CORONAS 53 7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 53 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 55 1. Corona Thresholds in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 1. Introduction 51 2. The Influence of Frequency 52 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 55 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 54	C. Relative Threshold Potentials of Positive	
7. SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS 54 AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 55 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 55 1. Corona Thresholds in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 55 C. SPHERE-TO-SPHERE GAPS 55 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 55 ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 55 1. Introduction 52 2. The Influence of Frequency 53 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomerna, and Radio Interference 54 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 55 4. Threshold for Symmetrical and Asymmetrical Sametrical Corona Gaps 55	and Negative Coronas	535
AT BOTH ELECTRODES 54 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS 54 B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 54 OF THE INITIAL BREAKDOWN 55 1. Corona Thresholds in Point-to-Point Gaps 55 2. Spark Breakdown in Point-to-Point Gaps 57 C. Sphere-to-Sphere GAPS 57 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 57 Asymmetrical Fields with Altrennating Potentials 55 1. Introduction 57 2. The Influence of Frequency 58 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 58 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 59 yith Alternating Potential 59	7 SYMMETRICAL GAPS WITH NON-UNIFORM FIELDS	
 A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER OF THE INITIAL BREAKDOWN 1. Corona Thresholds in Point-to-Point Gaps 2. Spark Breakdown in Point-to-Point Gaps 2. Spark Breakdown in Point-to-Point Gaps 3. SPHERE-TO-SPHERE GAPS 3. The Influence of Frequency 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 	AT BOTH ELECTRODES	552
B. THRESHOLDS AND THE ASYMMETRICAL CHARACTER 5 OF THE INITIAL BREAKDOWN 5 1. Corona Thresholds in Point-to-Point Gaps 5 2. Spark Breakdown in Point-to-Point Gaps 5 C. Sphere-to-Sphere GAPS 5 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 5 Asymmetrical Fields with Alternating Potentials 5 1. Introduction 5 2. The Influence of Frequency 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 5 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 5	A. GAP FORMS; AVOIDANCE OF FIELD DISTORTIONS	552
OF THE INITIAL BREAKDOWN 5. 1. Corona Thresholds in Point-to-Point Gaps 5. 2. Spark Breakdown in Point-to-Point Gaps 5. C. SPHERE-TO-SPHERE GAPS 5. D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 5. Asymmetrical Fields with Alternating Potentials 5. 1. Introduction 5. 2. The Influence of Frequency 5. 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 5. 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 5. with Alternating Potential 5.	B. Thresholds and the Asymmetrical Character	
1. Corona Thresholds in Point-to-Point Gaps 5 2. Spark Breakdown in Point-to-Point Gaps 5 C. SPHERE-TO-SPHERE GAPS 5 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 5 Asymmetrical Fields with Alternating Potentials 5 1. Introduction 5 2. The Influence of Frequency 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 5 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 5	OF THE INITIAL BREAKDOWN	557
2. Spark Breakdown in Point-to-Point Gaps 5 C. SPHERE-TO-SPHERE GAPS 5 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND 5 ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 5 1. Introduction 5 2. The Influence of Frequency 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 5 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 5	1. Corona Thresholds in Point-to-Point Gaps	557
C. SPHERE-TO-SPHERE GAPS 55 D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 5 1. Introduction 55 2. The Influence of Frequency 55 3. The AC Behavior in Asymmetrical Gaps, Corona Phenom- ena, and Radio Interference 55 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 55	2. Spark Breakdown in Point-to-Point Gaps	563
D. NON-UNIFORM BUT SYMMETRICAL FIELDS, AND ASYMMETRICAL FIELDS WITH ALTERNATING POTENTIALS 5 1. Introduction 5 2. The Influence of Frequency 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 5 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 5 with Alternating Potential 5	C. Sphere-to-Sphere Gaps	566
Asymmetrical Fields with Alternating Potentials 5 1. Introduction 5 2. The Influence of Frequency 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 5 4. Threshold for Symmetrical and Asymmetrical Corona Gaps 5 with Alternating Potential 5	D. Non-Uniform but Symmetrical Fields, and	
1. Introduction 5 2. The Influence of Frequency 5 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 5 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 5	Asymmetrical Fields with Alternating Potentials	569
 2. The Influence of Frequency 3. The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 	1. Introduction	569
 The AC Behavior in Asymmetrical Gaps, Corona Phenomena, and Radio Interference Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 	2. The Influence of Frequency	569
ena, and Radio Interference 5 4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential 5	3. The AC Behavior in Asymmetrical Gaps, Corona Phenom-	
4. Threshold for Symmetrical and Asymmetrical Corona Gaps with Alternating Potential	ena, and Radio Interference	571
with Alternating Potential	4. Threshold for Symmetrical and Asymmetrical Corona Gaps	
5	with Alternating Potential	583

•

5. The Rectifying Action	585
E. Influence of Illumination of the Gas on Breakdown	
THRESHOLDS; THE JOSHI AND ALLIED EFFECTS	586
1. Introduction	586
2. Background Physics of the Breakdown	587
3. Breakdown Studies of Nakaya with A–Hg Mixtures	594
APPENDIXES	609
I. RECENT ADVANCES CONCERNING THE MECHANISMS	
OF THE STREAMER SPARK IN AIR	611
II. RECENT ADVANCES IN THE AUTHOR'S LABORATORY	631
III. FURTHER DEVELOPMENTS ON WATER DROP CORONA	655
IV. Inclusion of Photoionization into the Dawson-Winn	
ZERO FIELD THEORY AND OTHER RECENT ADVANCES	661
INDEX TO AUTHORS	673
INDEX TO SUBJECTS	677