PF	REFACE	Ξ									ix	
1.	INTRO	Ú D Ų	CTION	••	••	••	••	••	• •		1	
2.	METHODS OF OBSERVATION OF A SINGLE AVALANCE											
	2.1. Cl	oud	chamber	method							3	
	2.1	.1.	Principle	e of the r	nethod						3	
	2.1			tained by				• • •			6	
				Drift vel				• •	• •		ϵ	
				Thermal	-	y of el	ectrons	3	• •	• •	6	
	2.1			ental det		• •		• •	• •	• •	8	
			2.1.3.1.	The char	nber	••	• •	• •	• •	• •	10	
	2.1			The volta					• •	• •	10	
				ity for de	tection	or an	avaian	cne	• •	• •	12	
			cal meth				• •	• •	• •		13	
				e of the 1			• •				13	
	2.2			rier curre							14	
	*			Current			• •		• •	• •	14	
				Current				• •	• •	• •	14	
				Current Current					hv.	• •	15	
			2.2.2.4.		or an					ın 	17	
			2.2.2.5.	Avalancl							19	
	2.2			tage puls				_			21	
				ental det	Ξ.	_					, 27	
	20.2			The disc				• •	• •	• •	27	
			2.2.4.2.	The volta	age sou	rce					28	
			2.2.4.3.	The volta Electroni	ic devic	e					29	
			2.2.4.4.	The proc	luction	of sta	rt elect	rons			35	
	2.2	2.5.	Sensitivi	ity of the	electric	cal me	thod				38	
	2.3. Or	otica	l method	1		• .•					40	
	2.3	3.1.	Principle	l e of the r	nethod	• •					40	
	2.3	3.2.	Experim	ental det	ails						42	
	2.3	3.3.	Sensitivi	ity of the	optical	meth	od				46	
				·								
3.	RESIII	ידי ו	OF EX	DEDIM	FNTC	ON /	AWAT.	A NICHE	'C			
٥.	RESULTS OF EXPERIMENTS ON AVALANCHES 3.1. Time constant of the growth of electrons and photons 5											
								-	ons	• •	50	
				of electr		• •	• •		• •	• •	50 53	
				ous elect		 npone	 nts in	 O₂ and	air		53 54	

3.2.	Therm	nal diffus	sion of e	lectrons	3				
3.3.	Statist	cics of av	alanche	amplifi	cation				
3.4.	Drift '	velocity	of carrie	ers					
	3.4.1.	Drift ve	elocity o	f electro	ons				
			Method		• •		• •		
			Results		• •	• •	• •	• •	• •
		Drift ve				• •	• •	• •	• •
	3.4.3.	Drift ve	elocity o	f negati	ve ions	• •	• •	• •	
3.5.	Deterr	mination	of the	ionizati	on coef	ficient	α		
	3.5.1.	Determ carrie	ination er numb		ne statis	stical (distribu 	ition of	the
	3.5.2.	Determ	ination	from th	e time	consta	ints of	the cur	rent
		Determ		from t	he heig	ht of	the ele	ctron c	
26	Dotorr	mination						••	• •
							•	· ·	• •
3.7.		nches of	_	_	-	-	_		• •
		Genera			••				
	3.7.2.	Observa fication							_
			Distribi		· · · · carrier				• •
			Rise tir						
		3.7.2.3.	Measur	ement o	of α* fr	om R	$C \alpha^* v_+$	$=\hat{1}$	
		3.7.2.4.	Transiti	ion time					
	2.7.2		Enlarge				the ava	lanche	• •
	3.7.3.	Discussi	ion of th	ie obsei	vations	• • •	• •	• •	• •
AVA	ALANC	CHES V	VITH S	SUCCE	SSORS				
4.1.	Gener	al remar	ks						
		nches w						ffect at	the
7.4.		iode; nu							
		Electro							
			The pri				roduce	d by a l	
		4.2.1.2.	flash The pr α-par	imary ticle	electror	is are	produ 	ced by	an
	4.2.2.	Total c	_						
4.3.		nches wi		ssors, r	roduce	d by r	ositive	ions at	the
		node; n_0		_					
4.4.							2000110	C.11	
	Avala	nches wi	th succe	ssors in	an inn	.omoge	encous	пеіа	
4.5.						_			
4.5.		nches v		ccessors	s, star	ted b	y one	elect	

	4.5.1.	Theoretical considerations	102							
		4.5.1.1. Probability for the production of secondary	102							
		electrons 4.5.1.2. Probability for the production of a given	103							
		number of generations	104							
		and the current of series of avalanches	105							
	4.5.2.	Experiments	109							
		Fluctuation of the generation time T_q	110							
		S y								
5.	BREAKD	OWN								
٥.			114							
		T	114							
			116							
		Comparison of the results with theory; discussion	120							
		mer Mechanism or Kanalaufbau	124							
	5.2.1.	Experiments in the cloud chamber	124							
		5.2.1.1. Results 5.2.1.2. Discussion of the results. Nature of streamers	124 126							
	522	Experiments with oscilloscopic methods on single	120							
	3.2.2.		132							
		avalanches	132							
		5.2.2.2. Probability of breakdown	133							
		5.2.2.3. Time of streamer development (T_K)	135							
		5.2.2.4. Rise time constant of the current growth (τ_K)	136							
	5.2.3.	Experiments with the oscilloscopic method on ava-								
		lanches started by $n_0 \gg 1$	136							
		5.2.3.1. General results	136 137							
		5.2.3.2. The critical carrier number 5.2.3.3. Time of streamer development (T_K)	138							
		5.2.3.4. Rise time constant of the current growth (τ_K)	139							
		5.2.3.5. Discussion of results	139							
	5.3. Trans	sition of breakdown types	140							
	5.4. Breakdown in air and other electronegative gases									
		al expansion of the discharge	143148							
	J.J. Spane	at expansion of the discharge	140							
6.	APPLICA	TIONS								
٠.	6.1. Plate counter									
		Avalanche counter	154 154							
		Spark counter	154							
		Special qualities of these counters	155							
		Spark chamber as particular detector	157							
	U.I.T.	Spair chambel as particular detector	121							

APPENDIX

	EORY OF THE TRANSIENT CURRENT OF A GAS CHARGE									
7.1.	. General considerations									
7.2.	. The current of a series of avalanches with photosuccessors,									
	started with n_0 primary electrons as a δ -function; $n_0 \gg 1$	164								
	7.2.1. General solution	164								
	7.2.2. Current in the external circuit	166								
	7.2.2.1. Electron current 7.2.2.2. Ion current and the total current	167 170								
7.3.	The mean current of a series of avalanches with photo- successors, started by one electron	171								
7.4.	The current of a series of avalanches with photosuccessors, started by $i_0(t)$	173								
	7.4.1. The primary electron current is produced by a light flash with finite duration	173								
	7.4.2. The primary electron current is produced by a constant illumination	175								
7.5.	The primary electrons are spatially distributed in the gap at $t = 0 \ldots \ldots \ldots \ldots \ldots \ldots$	178								
7.6.	The current of a series of avalanches with successors produced by ion impact on the cathode	180								
7.7.	The electron current of an avalanche with a delayed production of electrons	183								
INDEX		189								
	ERRATA									
Page 68.	Second line of legend should read: × transit time method ³									
Page 77.	Equation at top of page should read: $I_{-}(T_{-}) = \frac{\varepsilon}{T_{-}} \frac{\bar{\rho}_{0}d}{\alpha d} \dots$									
Page 104. Page 105. Page 114. Page 140.	Equation, line 19, should read $(v-\bar{v})^2 \dots$ Third line of legend should read: ent on v ; parameter: $\mu \dots$ First line should read: streamer mechanism \dots Sixth line from bottom should read: mechanism will then go on, if $1/\gamma \ge$	$\overline{n}_{ ext{crit.}}\dots$								
Page 165.	Equation 7.22 should read: $i_{-}(0, \xi) = f(\xi) \frac{e n_0}{T} g(\xi) \dots$									
Page 167.	Line 13 should read: First generation $0 \le t \le T$									
Page 176.	Line 16 should read: $\sum_{\nu=0}^{\infty}$									
Page 179.	Equation 7.80 should read: $I_{-}(t) = \frac{\varepsilon}{T_{-}} Fd \left\{ \rho_0 \int_{v=t}^{d} \cdots \right\}$									
Page 190.	Line 5, column 1, should read: N ₂ , O ₂ , air, ether, 63-67 Line 51, column 1, should read: of a Townsend discharge, 90, 161									
Page 191.	Line 37, column 2, should read: changing γ_{Ph}									