Contents

Pı	Preface		хi
In	trod	uction	1
1	Cha	arged Particles in the Electromagnetic Field	5
	1.1	Initial equations and their properties	5
	1.2	Liouville's theorem and the exact distribution function	9
2	The	Motion of a Charged Particle in Given Fields	15
	2.1	A particle in constant homogeneous fields	15
	2.2	Weakly inhomogeneous slowly changing fields	20
	2.3	Adiabatic invariants	29
	2.4	Reconnection and particle acceleration	36
		2.4.1 Neutral points of a magnetic field	36
		2.4.2 Reconnecting current sheets	39
		2.4.3 Acceleration in current sheets	41
3	Cou	alomb Collisions of Particles	47
	3.1	Close and distant collisions	47
	3.2	Debye shielding	51
	3.3	Times of collisional relaxations	53
4	Stat	tistical Description of a Plasma	59
	4.1	The averaging of Liouville's equation	59
	4.2	Collisional integral and correlation functions	66
	4.3	Equations for correlation functions	70
	4.4	Approximations for binary collisions	72
	4.5	Correlation function and Debye shielding	76

vi CONTENTS

5	Hy	rodynamic Description of a Plasma	31
	5.1	Transition to macroscopic transfer equations	81
	5.2		88
	5.3		92
			92
			96
			99
6	Ma	gnetohydrodynamics 10)1
	6.1	Basic assumptions and the MHD equations 10	01
	6.2	Magnetic flux conservation. Ideal MHD 10	06
	6.3	The main approximations in ideal MHD	10
7	Pla	ma Flows in a Strong Magnetic Field 11	L7
	7.1	General formulation of the problem	17
	7.2	The formalism of two-dimensional problems	19
			19
		7.2.2 Second type of problems	21
	7.3		26
	7.4		28
8	Wa	ves and Discontinuous Flows in a MHD Medium 13	35
	8.1	Small-amplitude waves	35
		8.1.1 Entropy waves	38
		8.1.2 Alfvén waves	39
			40
			42
	8.2		43
	8.3		46
			$^{-6}$
		8.3.2 Discontinuities without matter flows across them 18	
		8.3.3 Perpendicular shock wave	
		8.3.4 Oblique shock waves	
		8.3.5 Alfvén discontinuity	61
	8.4	Continuous transitions between discontinuous solutions 16	
9	Evo	lutionarity of MHD discontinuities 16	37
	9.1	Conditions for evolutionarity	
		9.1.1 Physical meaning and definition	

CONTENTS vii

		9.1.2 Linearized boundary conditions	 169
		9.1.3 Number of small-amplitude waves	171
		9.1.4 Domains of evolutionarity	 173
	9.2	Consequences of evolutionarity conditions	 175
		9.2.1 The order of wave propagation	 175
		9.2.2 Evolutionarity and transitions between discontinuities	
10	Plas	ma Equilibrium in a Magnetic Field	179
	10.1	The virial theorem in MHD	 179
		10.1.1 Deduction of the scalar virial theorem	 179
		10.1.2 Some astrophysical applications	 183
	10.2	Force-free fields and Shafranov's theorem	
	10.3	Properties of equilibrium configurations	 188
	10.4	Archimedean force in MHD	 194
11	Stat	ionary Plasma Flows in a Magnetic Field	197
	11.1	Ideal plasma flows	 197
	11.2	Flows at small magnetic Reynolds numbers	 202
		Expulsion force and vortex flows	
	11.4	Expulsion force for large magnetic Reynolds numbers	 214
		11.4.1 Formula for the expulsion force	 215
		11.4.2 Observable characteristics of prominences	 217
12	Mag	gnetic Reconnection in Current Sheets	221
	12.1	Small perturbations near a neutral line	 221
		12.1.1 Historical comment	 221
		12.1.2 Linearized problem in ideal MHD	 222
		12.1.3 Converging wave and cumulative effect	 225
	12.2	Field line deformation due to current displacement	 226
		Dynamic dissipation of a magnetic field	
	12.4	Particle acceleration into current sheets	
		12.4.1 Introduction in the problem	
		12.4.2 Dimensionless parameters and equations	
		12.4.3 Iterative solution	 237
		12.4.4 Maximum energy	
		12.4.5 Non-adiabatic thickness of current sheet	
	12.5	Regular Versus Chaotic Acceleration	
		12.5.1 Reasons for Chaos	
		12.5.2 Stabilizing influence of the longitudinal field	 244

viii CONTENTS

		12.5.3 Particle dynamics in current sheets on the Sun 2	246
13	Evo	lutionarity of current sheets 2	49
	13.1	Properties of reconnecting current sheets	249
	13.2	Small perturbations outside the RCS	253
		13.2.1 Basic assumptions	253
		13.2.2 Propagation of perturbations normal to the RCS	254
		13.2.3 Inclined propagation	255
	13.3	Small perturbations inside the RCS	258
		13.3.1 Linearized MHD equations	258
		13.3.2 Solution of the linearized equations	263
	13.4	Solution on the boundary of the RCS	266
	13.5	Criterion of evolutionarity	26 8
		13.5.1 Boundary conditions	268
		13.5.2 Evolutionarity of reconnecting current sheets	269
14	Tea	ring Instability of the Reconnecting Current Sheet	273
		Origin of tearing instability	273
		Formulation of the problem and its analytic solution	
		14.2.1 The model and equations for small disturbances	
		14.2.2 External non-dissipative region	
		14.2.3 Internal dissipative region	
		14.2.4 Matching of the solutions and dispersion relation	
	14.3	Physical interpretation of the instability	282
		Stabilizing effect of the transverse field	
	14.5	Compressibility and a longitudinal field	289
		14.5.1 Neutral current sheet	289
		14.5.2 Non-neutral current sheet	290
	14.6	Kinetic approach	291
		14.6.1 Kinetic tearing instability	291
		14.6.2 Stabilization by the transverse field	294
15	Sele	cted Trends in Cosmic Electrodynamics	297
		Reconnection and magnetic helicity	297
		· · · · · · · · · · · · · · · · · · ·	300
			300
		15.2.2 Balance equations and their solution	301
			$\frac{301}{303}$

CONTENTS ix

16 Rec	onnection of Electric Currents	307
16.1	Models for flare energy storage and release	307
	16.1.1 From early models to future investigations	307
	16.1.2 Some new trends in the flare theory	309
	16.1.3 Current sheets at separatrices	311
16.2	Current sheet formation mechanisms	
	16.2.1 Magnetic footpoints and their displacements	
	16.2.2 Classical 2D reconnection	
	16.2.3 Creation of current sheets by shearing motions	314
	16.2.4 Antisymmetrical shearing motions	
	16.2.5 Third class displacements	
16.3	Shear and reconnection of currents	320
	16.3.1 Physical processes related to shear and reconnection .	320
	16.3.2 Topological interruption of electric currents	
	16.3.3 Conclusion	323
Appen	dix 1. Notation	325
Appen	dix 2. Useful Expressions	333
Appen	dix 3. Constants	335
Bibliog	graphy	337
Index		355