TABLE OF CONTENTS

Session I - Combustion Generators

DEVELOPMENTAL PROBLEMS ASSOCIATED WITH A 20-MW HALL GENERATOR, L. E. Wright	1
SOME OBSERVATIONS OF THE AERODYNAMICS OF A LARGE MHD GENERATOR CHANNEL, W. Luchuk	3
COMPARISON OF EXPERIMENTAL AND ANALYTICAL RESULTS FOR A 20-MW COMBUSTION-DRIVEN HALL CONFIGURATION MHD GENERATOR, O. K. Sonju, J. Teno, and T. R. Brogan	5
RESULTS OF ELECTRO-PHYSICAL RESEARCHES ON MODULE SECTION OF MAGNETOHYDRODYNAMIC GENERATOR ENIN-2, D. G. Zhimerin, V. A. Bashilov, V. P. Motulevitch	11
A 3 MW CHANNEL FOR MHD OPEN CYCLE GENERATION WITH VARIABLE SECTION, W. Brzozowski, D. Yérouchalmi, H. Blattmann, and T. Skibicki	12
THE PERFORMANCE OF A FAMILY OF DIAGONAL CONDUCTING WALL MHD OPEN-CYCLE GENERATORS, J. B. Dicks, Y.C.L. Wu, L. W. Crawford, J. K. Koester, J. Muehlhauser, L. Edwards, P. Chang, and J. W. Stephens	16
PERFORMANCE OF AN MHD GENERATOR CHANNEL, H. Ogiwara, M. Kato, K. Mawatari, and T. Tamaoki	29
ELECTRODE SIZE EFFECTS IN COMBUSTION-DRIVEN MHD GENERATORS, E. S. Rubin and R. H. Eustis	35
ADVANCED PEAKING POWER PLANTS, R. Rosa, F. Hals, J. Teno, S. Petty, W. Jackson, and A. Kantrowitz	41

Session II - Plasmas and Discharges

CONDUCTIVITY MEASUREMENTS IN PURE ARGON PLASMA AT MAGNETIC FIELD STRENGTHS UP TO 2 TESLA, G. Hahn and M. Salvat	5
A HIGH PRESSURE POTASSIUM VAPOR DIODE STUDY, N. A. Evans	9
ANALYTICAL AND EXPERIMENTAL STUDIES OF THERMIONICALLY EMITTING ELECTRODES IN CONTACT WITH DENSE, SEEDED PLASMAS, J. K. Koester, M. Sajben, and E. E. Zukoski	54
EXPERIMENTAL INVESTIGATION OF THE POTENTIAL DROP NEAR THE ELECTRODE SURFACE IN POTASSIUM SEEDED ARGON FLOW, G. A. Lyubimov, V. O. German, and B. V. Parfenov	51
STUDIES WITH A DISK GENERATOR DRIVEN BY MOLECULAR GASSES,J. E. Klepeis and J. F. Louis6	52
INFLUENCE OF CONTROLLED TURBULENCE ON GASEOUS DISCHARGES, S. T. Demetriades, C. D. Maxwell, G. S. Argyropoulos, and G. Fonda-Bonardi	54
TIME BEHAVIOR OF THE ELECTRICAL CURRENT THROUGH A STATIONARY GAS IN AN EXTERNAL MAGNETIC FIELD, G. Kolb	70
INVESTIGATION OF THE BEHAVIOR OF THE DISCHARGE AND THE FLOW IN A HOMOPOLAR DEVICE, H. O. Noeske	71
THE APPLICATION OF RIGHT- AND LEFT-POLARIZED ULTRA-HIGH-FREQUENCYWAVES FOR LOW-TEMPERATURE PLASMA DIAGNOSTICS, V. A. Popov,I. K. Shvarov, and N. N. Ivanchinov7	75
EXPERIMENTAL INVESTIGATION OF SOME ERRORS OF IONIZED GAS MICROWAVE DIAGNOSTICS AND METHODS OF THEIR REDUCTION, I. A. Jevgrafov, N. N. Ivanchinov, E. V. Makolkin, V. A. Popov, and G. N. Starostin	76

TABLE OF CONTENTS (Cont'd)

DESIGN AND OPERATIONAL CHARACTERISTICS OF THE LANGLEY 20 MEGAWATT PLASMA ACCELERATOR FACILITY, W. R. Weaver, D. R. McFarland, A. F. Carter, and G. P. Wood	77
Session III - Closed Cycle Generators and Generator Design	
RESULTS OF INITIAL SUBSONIC TESTS IN THE NASA-LEWIS CLOSED LOOP MHD GENERATOR, R. J. Sovie and L. D. Nichols	82
PERFORMANCE AND DISCHARGE STRUCTURE OF A NOBLE GAS ALKALI MHD GENERATOR, H. Zinko and G. Brederlow	90
PERFORMANCE OF A LARGE SCALE, NON-EQUILIBRIUM MHD GENERATOR WITH RARE GASES — Part II, B. Zauderer and E. Tate	95
THE U.T.I.A.S. MHD POWER GENERATION FACILITY AND RESULTS OF EARLY EXPERIMENTS,'S. Townsend	101
CONSTRUCTION AND TEST OF ARGAS II, T. Bohn, K. Grawatsch, Ch. Holzapfel, G. Kolb, P. Komarek, H. Lang, G. Noack, and P. Schabel	104
ASPECTS OF ESSENTIAL COMPONENTS OF NUCLEAR MHD PLANTS, T. Bohn, P. Komarek and G. Noack	109
CURRENT DISTRIBUTION IN CONDUCTING WALL MHD GENERATORS, R. H. Eustis, R. M. Cima, and K. E. Berry	119
CURRENT DISTRIBUTION OF A SEGMENTED HALL GENERATOR, Y.C.L. Wu and J. F. Martin	128
AXIAL CURRENT LEAKAGE BETWEEN ELECTRODES IN MHD GENERATORS, J. C. Cutting and R. H. Eustis	130
PULSED MHD GENERATOR ANALYSIS WITH HIGH INDUCED FIELD S , A. S. Roberts, Jr. and S. Palmgren	135
Session IV - Liquid-Metal Magnetohydrodynamics	
TWO-PHASE NOZZLE AND HOLLOW CORE JET CONDENSER EXPERIMENTS, J. Klockgether and H. P. Schwefel	141
LIQUID-GAS SEPARATION USING IMPINGING TWO-PHASE JETS, D. W. Bogdanoff	149
PERFORMANCE OF A QUASI-ERICSSON TWO-PHASE TWO COMPONENT LIQUID METAL MHD POWER CYCLE, W. Amend, C. Hsu, M. Petrick, and J. Roberts	154
ON THE MOVEMENT OF LIQUID METAL SLUG FLOW IN AN MHD GENERATOR CHANNEL, P. P. Orlov, V. A. Bashkatov, and E. E. Shpilrain	160
PRELIMINARY EXPERIMENTAL RESULTS FROM A ONE-WAVELENGTH MHD INDUCTION GENERATOR, E.S. Pierson	161
A NUCLEAR ELECTRIC PROPELLED SPACECRAFT USING A 300 kWe LIQUID METAL MAGNETOHYDRODYNAMIC POWER SYSTEM, R. M. Bernero, A. S. Jacobsen, and N. A. Evans	
	165
Session V - Channel Flows and Instabilities	
PROGRESS REPORT ON INDUCTIVE MFD ENERGY CONVERSION RESEARCH AT DFVLR, W. Peschka, C. Carpetis, A. Gann, and R. Henry	170
VARIATIONAL OPTIMIZATION OF SEGMENTED-ELECTRODE FARADAY TYPE CLOSED CYCLE MHD GENERATORS, S. Bobbio, L. De Menna, O. Greco, and V. Zampaglione	176

TABLE OF CONTENTS (Cont'd)

ON MHD CHANNEL FLOW AT LARGE MAGNETIC REYNOLDS NUMBERS, V. I. Kovbasyuk and S. A. Medin	177
MAGNETOPLASMADYNAMIC EXPERIMENTS IN AN INDUCTIVE-HYDRODYNAMIC SHOCK TUBE, L. W. Rothhardt	179
COMPRESSIBLE, TURBULENT BOUNDARY LAYERS WITH MHD EFFECTS, ELECTRON THERMAL NON-EQUILIBRIUM, AND FINITE RATE IONIZATION, E. J. Felderman and M. D. High	180
HEAT TRANSFER OF PARTIALLY IONIZED NITROGEN IN CHANNEL FLOW, G.M. Colver and S. L. Soo	184
IONIZATION INSTABILITIES IN A CONTINUOUS-ELECTRODE GENERATOR, R. M. Evans, J. F. Louis, M. Mitchner, and C. H. Kruger	190
NUMERICAL SIMULATION OF IONIZATION INSTABILITY WITH ALLOWANCE FOR DISSIPATIVE PROCESSES, L. L. Lengyel	193
EXPERIMENTAL AND THEORETICAL STUDIES OF THE INFLUENCE OF BOUNDARY CONDITIONS ON THE DEVELOPMENT OF IONIZATION INSTABILITY, W. Riedmüller	199
MEASUREMENT OF THE CURRENT DIRECTIONS AND FIELD FLUCTUATIONS DUE TO IONIZATION INSTABILITIES IN A SIMULATED FARADAY-TYPE MHD GENERATOR, J. Burger and G. Brederlow	205
ELECTROTHERMAL INSTABILITY IN PLASMAS WITH CURRENT FLOW PARALLEL TO THE MAGNETIC FIELD, A. Solbes, T. Nakamura, and J. L. Kerrebrock	209
	409