Contents

\mathbf{P}	REFA	CE	ix
1.	INT	RODUCTION	1
	1.1	Taylor's Theory of Plasma Relaxation	2
	1.2	The Underlying Physics of Plasma Relaxation	6
	1.3	Toroidal Systems and the RFP	9
	1.4	Overview of the Remainder of the Book	1 2
2.	THE	E RESISTIVE MAGNETOHYDRODYNAMIC MODEL	15
	2.1	Resistive Magnetohydrodynamics	15
		The Physical Model	15
		The Evolution of the Fluid	17
		The Evolution of the Electromagnetic Fields	21
		Characteristic Oscillations; Normal Modes	22
		Dimensionless Variables; the Lundquist Number	25
	2.2	MHD Stability	26
		Linear Stability of Normal Modes	26
		Magnetic Shear and Singular Surfaces	28
		Toroidal Pinch Configurations	29
		Resistive Instabilities	31
		Nonlinear Effects	37
	2.3	Stability Properties of the RFP	39
	2.4	The Force Free MHD Model	42
	2.5	The Role of Numerical Simulation	43
3.	TAY	YLOR'S THEORY OF PLASMA RELAXATION	47
	3.1	The Constraints of Ideal MHD	48
		The Woltjer Constraints	48
		The Topological Properties of the Woltjer Constraints	50
	3.2	Energy Minimization with the Constraints of Ideal MHD	51

v

vi Contents

	3.3	The Effect of Plasma Resistivity	53
		Taylor's Conjecture	53
	3.4	Energy Minimization with the Global Helicity Constraint	54
		Validity of Taylor's Conjecture	55
		Properly Defined Helicity	57
		The Role of Plasma Pressure in Taylor's Theory	58
	3.5	Predictions of the Theory	58
		The Reversed-Field Pinch	58
		Summary of RFP Predictions	61
		The Multipinch Experiment	62
	3.6	Discussion	63
4.		ENOMENOLOGY OF RELAXATION IN THE REVERSED-FIELD	67
	4.1	Mean Field Profiles	68
	4.2	The Stability of Relaxed States	74
	4.3	Resistive Diffusion	82
	4.4	The Phenomenological Cyclical Model	87
	4.5	Experimental Observations of Relaxation Phenomena in the RFP	88
5.	THI	E DYNAMICS OF PLASMA RELAXATION	95
	5.1	Classical Dynamo Theory	96
		Kinematic Dynamos	97
		Cowling's Theorem	99
		The Turbulent Dynamo	101
		Relevance to the RFP Dynamo	102
	5.2	The Basic Relaxation Mechanism	104
		The Original Work of Sykes and Wesson	104
		Spontaneous and Driven Reconnection in the RFP	106
		Fluctuations and Ohm's Law	110
		Evidence of Taylor Relaxation	111

		The Helical Ohmic State	113
	5.3	Effects of Nonlinear Mode Coupling	115
		MHD Fluctuations	115
		Nonlinear Mode Coupling	118
	5.4	Summary	126
6.	PR/	CTICAL ISSUES RELATED TO RELAXATION	1 29
	6.1	Anomalous Loop Voltage	130
		Perfectly Conducting Outer Boundary	130
		Operation with Resistive Walls and Limiters	130
		Helicity Balance	138
	6.2	Taming the Dynamo; An Application of the Theory	139
7.	REL	AXATION AND THERMAL TRANSPORT	143
	7.1	A Model for Sawtooth Oscillations in the RFP	144
		Experimental Observations	144
		Theoretical Interpretation of the Sawtooth Crash	145
	7.2	Thermal Transport During Sawtooth Oscillations	148
		Energy Confinement Time	148
		Modifications to the Resistive MHD Model	149
		Simulation of Sawtooth Oscillations	150
	7.3	Summary	154
8.	DYI	NAMICAL RELAXATION IN THE SOLAR CORONA	155
	8.1	Overview of Coronal Dynamics	155
	8.2	Magnetic Arcade Evolution	157
	8.3	Coronal Current Filaments	163
	8.4	An Analogy Between the Solar Corona and the RFP	170
9.	SUN	MMARY	171
	9.1	Relaxation in the Reversed-field Pinch	1 72
	9.2	Relaxation and Transport	174
	9.3	Relaxation in the Solar Corona	175

Contents vii

viii Contents

9.4	Critique	175
	To what extent can the numerical simulations be believed?	176
	What about analytic theory?	176
	What is the role of turbulence?	176
	Are pressure driven modes important?	177
	Are there non-MHD effects?	177
	What is the future of relaxation studies?	177
REFERENCES		179
INDEX	٢	185