Table of Contents

For Intr	eword . oductio	
		Chapter 1 Engineering Technical Problems of Developing MHD Power Plants
1.1	Introd	luction1
1.2	Preser	nt Stage of Investigations and Future Developments
	1.2.1	Future Application of MHD Conversion
		in Power Generation5
	1.2.2	Basic Results of Investigations of the
		Development of the First Commercial-Scale,
		Coal-Combusting, MHD Energy System in the U.S.S.R12
		1.2.2.1 The U-02 Facility
		Commercial Scale Facility 14
		1.2.2.3 U-25B Facility 28
	1.2.3	Investigations of Certain MHD Facilities
		Intended for Other Purposes
	1.2.4	Development of the First Commercial-Scale
		MHD Power Plant
1.3	Therm	nal Loops and Layout of MHD Power Systems
	1.3.1	Thermodynamic and Basic Thermal Schemes
		of an MHD Facility34
	1.3.2	Systems Plan
	1.3.3	Methods of Obtaining High Initial Temperature
	1.3.4	Using Generator Exhaust Gas Heat
	125	In Low-Temperature Cycles
	1.3.5	in Binary MHD Power Systems
	1.3.6	Compression of the Oxidizer
	1.3.7	Methods of Utilizing Low-Potential Heat 54
	1.3.8	System and Layout of the MHD Power System
1.4	Engin	eering Problems of Developing an MHD Power System62
	1.4.1	Combustor
	1.4.2	MHD Generator Channel
	1.4.3	Superconducting Magnet System73
	1.4.4	Inverter System
	1.4.5	Oxidizer Preparation System
		1.4.3.1 High-Temperature Air Preheaters

	1.4.5.2 Oxidizer Compression	
	1.4.5.3 Oxygen Enrichment of Air	84
1.4.6	Steam Generator	
1.4.7	Seed System	
1.4.8	Protection of the Biosphere	94

Chapter 2 Calculation of MHD Channel Flows

2.1	Introd	uction		105
2.2	Axial (Longituc	linal) Problems of Electrodynamics	106
	2.2.1	Variatio	nal Problem of Electrodynamics	106
		2.2.1.1	Formulation of the Variational Problem	107
		2.2.1.2	Variational Problems of the End Effect	
			in an MHD Channel	113
	2.2.2	Numeric	cal Solution of Linear Electrodynamic	
		Probl	ems	122
		2.2.2.1	Problem Formulation and Parametrization	
			of Numerical Solution	122
		2.2.2.2	Optimal Loading of an MHD Channel	127
		2.2.2.3	The Effects of Nonuniform Loading	
			of a Segmented MHD Channel	139
2.3	Traver	se Electr	odynamic Problems	148
	2.3.1	Problem	1 Formulation	149
	2.3.2	Variatio	nal Problem of the Potential and Current	
		Distri	bution over the Cross Section of an	
		MHD	Channel	152
		2.3.2.1	Problem Formulation	152
		2.3.2.2	Optimal Potential Distribution in the	
			MHD Channel	156
	2.3.3	The Inf	luence of Plasma Nonuniformities on the	
		Chara	acteristics of Frame MHD Channels	161
		2.3.3.1	Problem Formulation	161
		2.3.3.2	Integral Nonuniformity Parameters	163
		2.3.3.3	Rectangular Channel with One-Dimensional	
			Conductivity Nonuniformity	170
	2.3.4	Numeri	cal Analysis of Electrodynamics in the	
		Cross	Section of a Frame MHD Channel	174
		2.3.4.1	Problem Formulation and the Method	
			of Solution	175
		2.3.4.2	Rectangular Channel	176
		2.3.4.3	Oval Channel	181
2.4	Two-L	Dimension	nal Inviscid Flows in an MHD Channel	183
	2.4.1	Problen	n Formulation	183
	2.4.2	Superso	onic MHD Flows	186

	2.4.3	Subsonic MHD Flows	192
2.5	Quasi-	One-Dimensional (Hydraulic Approximation	
	and	Engineering Methods of Calculating Flow Parameters	
	in a	n MHD Generator Channel	198
	2.5.1	The Basic Equations of the Quasi-One-Dimensional	
		Approximation	199
	2.5.2	Gasdynamic Structure of the Model	202
	2.5.3	Calculation of Friction and Heat Transfer	205
	2.5.4	Electrodynamic Flow Model for an MHD	
		Generator Channel	209
	2.5.5	Incorporating Certain Real Effects	219
		2.5.5.1 The Effect of Finite Segmentation	220
		2.5.5.2 Discharge Constriction at the Electrode	223
		2.5.5.3 End Effects	231
		2.5.5.4 Current Leakage to Channel Side Walls	236
		2.5.5.5 Transverse Pressure Gradient	242
	2.5.6	Level of Description	246
	2.5.7	Experimental Data Processing Using the Quasi-	
		One-Dimensional Approximation	252
	2.5.8	Calculation of a Flow in a Channel of a Commercial-	
		Scale MHD Generator	260

Chapter 3 Characteristics of a Nonideal MHD Generator

3.1	Introd	uction		271
3.2	The Ir	ufluence of	of Various Factors of the Characteristics	
	of a	Real MH	ID Generator	273
	3.2.1	Nonidea	l Behavior of an MHD Channel	274
	3.2.2	Certain	Characteristics of the U-02 and "Start"	
		Exper	imental Facilities	275
	3.2.3	Transve	rse Plasma Conductivity Nonuniformity	281
	3.2.4	Nonidea	l Behavior of Insulation	284
	3.2.5	Joint In	fluence of Plasma Conductivity Nonuniformity	
		and N	onideal Behavior of Insulation	289
	3.2.6	No-Loa	d Voltage in an MHD Generator	291
	3.2.7	Direct E	Experimental Verification of Current	
		Circu	lation in an Nonuniform Flow Caused	
		by the	e Hall Effect	292
	3.2.8	Other F	actors	295
		3.2.8.1	Nonideal Behavior of Electrode Segmentation	296
		3.2.8.2	Nonuniformity in Flow Rate and Transverse	
			Plasma Conductivity	298
		3.2.8.3	Near-Electrode Potential Drop	299

	3.2.9	Protrusion of Electrodes into the Flow. Transverse	
		Current Nonuniformity	.301
	3.2.10	Simplest Model that Takes into Account the	
		Current Flow to the Insulation Walls	.306
3.3	Simpli	ified Model and Methods of Calculating Local	
	Cha	aracteristics of an MHD Generator taking into	
	Acc	ount Three-Dimensional Current Distribution	
	in C	Channels	.308
	3.3.1	Construction of the Computational Model	.309
	3.3.2	Special Cases	.317
		3.3.2.1 Low Near-Electrode Potential Drop	.317
		3.3.2.2 The " $J_z = 0$ " Model	.318
		3.3.2.3 The " $E_z = 0$ " Model	.319
		3.3.2.4 Infinite Surface Conductivity of Horizontal	
		Walls of an MHD Channel $(\sigma_y^w \rightarrow \infty)$.320
	3.3.3	Comparison of the Results with the Experimental	
		Data and an Exact Solution of the Problem	.320
3.4	Nonid	leal Behavior of Large-Scale MHD Channels	.325
	3.4.1	The Influence of Various Factors on the Characteristics	
		of a Commercial-Scale MHD Generator	.325
	3.4.2	Permissible Level of Surface Conductivity of MHD	
		Channel Walls	.327
	3.4.3	Nonideal Insulation and Efficiency of an	
	~ .	MHD Generator	.329
3.5	Certai	in Aspects of Optimizing Parameters of an	
	MH	ID Generator	.333
	3.5.1	Optimal Flow Rate	.333
	3.5.2	Certain Aspects of Optimum Wall Temperature	
	252	of an MHD Channel	.340
	3.5.3	Optimal Ratio of the Sides of an MHD Channel	
2.0	• •	Cross Section	.343
3.6	Concl	usions	.352
	Apper	1d1x	. 355

Chapter 4 Plasma Diagnostics in MHD Generators

4.1	Introduction	
4.2	Spectroscopic Diagnostics of Spatially Nonuniform	
	Gas (Theory)	
	4.2.1 On the Application of Kirchhoff's Law for a	
	Description of Emission of Alkali Atoms	
	in Combustion Products	371

	4.2.2	Emission Source Function of Resonance Lines
		of Alkali Atoms in MHD Generators
	4.2.3	Determination of the Concentration of Atoms
		with the Aid of Self-Reversed Spectral Lines
	4.2.4	Measurement of the Temperature of a Spatially
		Nonuniform Gas382
	4.2.5	Temperature Fluctuations in the Gas
4.3	Spectr	oscopic Gas Temperature and Atom Concentration
	Mea	asurements in Equilibrium MHD Generators
	4.3.1	Devices for Measuring Temperature by the
		Generalized Self-Reversal Method
	4.3.2	Emission Intensity Fluctuations406
	4.3.3	Measurement of Concentration of Alkali Metal Atoms408
4.4	Feasib	ility of Diagnostics of Combustion Products
	wit	h Alkali Seed by Means of an HCN Laser410
	4.4.1	Experimental System and Measuring Methods413
	4.4.2	Experimental Verification of the Feasibility of Using
		an HCN Laser in Combustion Products with
		Alkali Seed420
4.5	Local	Measurement of the Electron Temperature
	with	Cold Electric Probes
	4.5.1	The Influence of the Temperature of the Probe
		on the Temperature Being Measured in the Case
		of High Electronic Thermal Conductivity428
	4.5.2	The Influence of the Temperature of the Probe
		on the Temperature Being Measured When
		the Electron Temperature is Equal to That
	4 5 9	of Heavy Particles441
	4.5.3	Experimental Investigation of the Influence of the
		Temperature of the Probe on the Temperature
	454	Measurements
	4.5.4	Experimental Investigation of the Relative
		Distribution of the Gas Temperature Near the
		Surface of the Probe452

Chapter 5 Phenomena in the Near-Electrode Region of a Constricted Discharge

5.1	Introc	luction	465
5.2	Preser	nt State of the Problem	466
5.3	Near-	Cathode Region of Arc Discharge in Electrode	
	Ma	terials Vapors	475
	5.3.1	Analysis of the Theory	475
	5.3.2	Model and the System of Equations	

		of Equations	108
		of Equations	
		5.3.3.1 Solid Cathode	498
		5.3.3.2 Film Cathode	511
		5.3.3.3 Method of Autographs	527
5.4	Const	ricted Discharge on Metal Electrodes in an MHD	
	Gen	erator Channel	533
	5.4.1	Theoretical Analysis	534
	5.4.2	Model and Solution of the System of Equations	539
	5.4.3	Erosion Processes on the Cathode	562