CONTENTS

FOREWORD	v
PREFACE	vii
INTRODUCTION	xiii
1. BASIC EQUATIONS AND BOUNDARY CONDITIONS OF	1
MAGNEIUGASDINAMIUS	1
1. Differential Equations of Magnetogasdynamics	1
2. Basic Definitions of the Kinetic Theory	5
3. Unm's Law	9
5. Limiting Conditions in Magnetogradynamics	10
6. The Bernoulli Equation	22
2 PROPERTIES OF IONIZED CAS	
	20
1. Estimating the Coefficients of Viscosity, Thermal Conductivity and Electrical Conductivity for Monatomic Gases	25
2. Estimating the Transfer Coefficients for Multiatomic Gases	31
3. Determination of the Degree of Ionization of Equilibrium Plasma	35
3. BASIC SIMILARITY CRITERIA	41
1. Derivation of Independent Similarity Criteria	41
2. The Physical Meaning of Similarity Criteria in Magnetogasdynamics	46
4. ONE DIMENSIONAL STEADY-STATE PLASMA FLOWS IN CROSSED	40
ELECTRIC AND MAGNETIC FIELDS	49
1. Qualitative Consideration of One-Dimensional Steady-State Plasma Flows	49
2. Integration of Equations of One-Dimensional Isothermal Motion	
when the Velocity is a Power Function of the Cross-Sectional Area	54
3. Solution of Equations of One-Dimensional Plasma Flow in a Constant Cross-Section Channel with Intersecting E and B Fields	58
4. Integration of Equations of One-Dimensional Plasma Flow with Low	
Magnetic Reynolds Numbers	61
5. Experimental Investigation of Plasma Motion in a Magnetic Field	65

ix

x	Contents
5. PROPAGATION OF DISTURBANCES IN PLASMA	71
 Determination of the Rate of Propagation of Small Disturbances Specific Features of the Propagation of Small Disturbances in 	71
3. Experimental Investigation of the Propagation of Alfvén Waves	78 84
6. MOTION OF IONIZED GAS IN THE ABSENCE OF DISSIPATIVE PROCESSES	87
 Characteristics of Equations of Planar Steady-State Flows Characteristics in the Hodograph Plane Steady-State Flow Around a Nonconducting Wedge Flow Around Thin Bodies 	87 95 106 114
7. SHOCK WAVES IN PLASMA	127
 Relationships at the Surfaces of Strong Shock Discontinuities Normal Shock Oblique Shock Polar Shock Diagrams for Flows with Parallel Field and Velocity 	127 129 134
Vectors 5. Stability of Shock Waves	140 144
8. ELECTRODE-ADJACENT LAYERS	147
 Qualitative Description of Processes Occurring During the Flow of Current Through the Interface Between Hot Plasma and Cold Electrode Example of Theoretical Calculation of the Electric Field Profile and of the Concentration of Charged Particles in the Electrode- 	147
 Adjacent Layer 3. The Electrode-Adjacent Layer in Free Molecular Flow Around a Langmuir Probe 4. The Electrode Adjacent Layer in a Continuum Flow Around a Langmuir Probe 	149 154
4. The Electrode-Adjacent Layer in a Continuum Flow Around a Langmuir Probe	160
5. Electrode-Adjacent Layer at Hot Electrodes in a Magnetic Field 6. Experimental Heat Transfer and Change of Potential Data for	162
Electrode-Adjacent Layers	169
9. THE BOUNDARY LAYER IN PLASMA	175
1. General Characteristics of the Boundary Layer in Magnetogas- dynamics	175
2. Laminar Boundary Layer at a Flat Plate with the Magnetic Field Perpendicular to the Wall	177
3. Laminar Boundary Layer at a Flat Plate with the Magnetic Field at an Angle to the Wall. The External Flow is Nonionized	183
Parallel to the Wall	186
 Laminar Boundary Layer at a Wedge Laminar Boundary Layer in the Stagnation Point of a Blunt Body Planar and Axially Symmetric Flow of Plasma 	193 in 198
7. Magnetic Boundary Layer 8. Laminar Boundary Layer at the Electrodec of a Chennel with	201
Crossed Fields. An Inert Gas with Admixtures of Easily Ionized Substances	202

Contents	xi
 9. Laminar Boundary Layer at Electrodes of a Channel with Crossed Fields. Completely Ionized Gas 10. Boundary Layer at Electrodes with a Break-Off in the Electron Temperature 	209 222
10. TWO-DIMENSIONAL MOTION OF PLASMA IN CHANNELS	225
1. Plasma Flow in a Rectangular Channel	225
 Plasma Flow in a Cylindrical Pipe with Nonconducting Walls in the Presence of an External Magnetic Field Perpendicular to the Pipe Axis Effect of the Electrical Conductivity of the Walls on the Character of Pileway Flow in Character 	235
4. Effect of the Hall Parameter on the Flow of Plasma Between	240
Parallel Walls in an Infinitely Wide Channel 5. Effect of the Hall Parameter on Plasma Flow in a Channel with	244
Sectionalized Electrodes	250 257
7. Heat Transfer Between Flowing Plasma and Walls in an Infinitely	257
	200
1. Distrady-State PLASMA FLOW	273
Transverse Magnetic Field	273
2. General Form of Characteristics for One-Dimensional Unsteady- State Plasma Flow in a Transverse Magnetic Field	275
3. Characteristics of Equations for One-Dimensional Flow with the Magnetic Field Inclined at an Arbitrary Angle	278
4. Unsteady-State Plasma Flows in Channels	281
5. The Rayleign Problem in Magnetogasaynamics	288
12. HYDRODYNAMIC INSTABILITY OF PLASMA	299
 Laminar and Turbulent Flow of Plasma Theoretical Investigations of the Stability of Laminar Plasma 	299
Flow	302
13. EQUATIONS OF TWO-TEMPERATURE MAGNETOGASDYNAMICS	309
1. Transfer Equations for Partially Ionized Two-Temperature	309
2. Solution of the Boltzmann Equations 3. Working Formulas for Calculating Friction, Heat Fluxes.	312
Current Density and Diffusion Rates	319
4. Particular Cases of Fully Ionized Plasma and Plasma Without a Magnetic Field	327
14. PRACTICAL APPLICATIONS OF MAGNETOGASDYNAMICS	333
1. Plasma Jet Engines	333
2. Magnetogasdynamic Electric Power Generators 3. Magnetogasdynamic Wind Tunnels	345 349
REFERENCES	353
INDEX	929
INDLA	909