CONTENTS

PREFACE TO THE SECOND EDITION	v
EXTRACT FROM PREFACE TO THE FIRST	
EDITION	vi
HISTORICAL INTRODUCTION	1
Part I: MAGNETOHYDRODYNAMICS	
I. INTRODUCTION AND FUNDAMENTAL	
EQUATIONS	13
1.1. The electrodynamics of moving media	13
1.2. The electromagnetic effects and the magnetic Reynolds	
number	17
1.3. Alfvén's theorem	19
1.4. The magnetic energy	25
1.5. The mechanical equations	26
1.6. The mechanical effects	28
1.7. The electromagnetic stresses	31
II. MAGNETOHYDROSTATICS AND STEADY	
STATES	3 5
2.1. Magnetohydrostatic problems	35
2.2. Force-free magnetic fields	37
2.3. Pressure-balanced magnetohydrostatic configurations	48
2.4. Toroidal magnetic fields	52
2.5. Steady laminar motion	55
2.6. Engineering experiments	60
APPENDIX TO CHAPTER II	
The vector wave equation. Toroidal and poloidal vector	
fields	62
III. MAGNETOHYDRODYNAMIC WAVES	66
3.1. Waves in an infinite fluid of infinite electrical conductivity	66
3.2. Alfvén waves	67
3.3. Magnetohydrodynamic waves in a compressible fluid	71
3.4. Magnetohydrodynamic waves in a non-uniform magnetic	
field	77
3.5. The reflection and refraction of Alfvén waves: propagation	
in a stratified medium	79
3.6. Dissipative effects	83

CONTENTS

IV. HYDROMAGNETIC SHOCK WAVES	90
4.1. Introduction	90
4.2. Stationary plane shock waves in the absence of a magnetic	
field	93
4.3. Plane hydromagnetic shock waves	99
4.4. The structure of a hydromagnetic shock wave	103
4.5. Plane shock waves advancing into a stationary gas: the	
hydromagnetic bore wave	105
4.6. Oblique shocks	106
V. STABILITY	116
5.1. Introduction	116
5.2. Simple illustrative examples	120
5.3. The method of small oscillations	125
5.4. The energy principle	132
5.5. The virial theorem	133
5.6. Marginal stability—the Bénard problem with a magnetic	
field	137
VI. TURBULENCE	143
6.1. Introduction	143
6.2. Transference and dissipation of energy in turbulent motion	144
6.3. Spectral analysis	144
6.4. Homogeneity and isotropy	146
6.5. Kolmogoroff's principle	146
6.6. Hydromagnetic turbulence	147
6.7. Inhibition of turbulence by a magnetic field	150
Part II: PLASMA DYNAMICS	
VII THE MOTION OF A CHARGED DADWIGLE IN	

v 11.	THE MOTION OF A CHARGED FARTICLE IN	
	A MAGNETIC FIELD	153
7.1.	General characteristics	153
7.2.	The equation of motion of a charged particle in crossed	
	electric and magnetic fields	154
7.3.	The motion of a charged particle in a uniform magnetic	
	field	154
7.4.	Magnetic moment	156
7.5.	Particle drifts in an inhomogeneous magnetic field	157
7.6.	Drifts produced by a field of force in the presence of a	
	magnetic field	164
7.7.	The motion of a charged particle in the field of a magnetic	
	dipole	167
7.8.	Magnetic bottles	170

CONTENTS

APPENDIX TO CHAPTER VII	
Solution of the perturbation equation	171
	154
VIII. DYNAMICS OF A PLASMA	174
8.1. Introduction	174
8.2. Definitions	175
8.3. Mean values of functions of molecular velocities	170
8.4. Boltzmann's equation	177
8.5. The steady state	178
8.6. Relaxation towards the steady state	179
8.7. Moment equations. The equations of continuity and	100
motion for a simple gas	180
8.8. The equations for a plasma	182
8.9. Approximate calculation of the collision terms	180
8.10. The existence of a time of relaxation	188
8.11. Electrical neutrality: the Debye distance	191
8.12. Collision interval and mean free path in a plasma	193
8.13. Approximate evaluation of the distribution function for	100
the electrons	198
8.14. Electric currents in a plasma	199
8.15. Electrical and thermal conductivities in a plasma at rest	201
8.16. Modifications due to the presence of a magnetic field	204
8.17. The various conductivities: dissipation of energy	206
8.18. The equation of diffusion	208
8.19. Vorticity theorems	209
8.20. Collisionless plasmas	213
IX. WAVES IN A PLASMA	222
0.1 Introduction	222
0.2 Electrostatic wayes	222
9.3 Electromagnetic and hydromagnetic waves	228
9.4 Wayes in collision-free plasmas	237
U.1. HUTCH III COMBININ I CO PARAMAN	
BIBLIOGRAPHY	243
INDEX	250