CONTENTS | CONTRIBUTORS TO VOLUME 1 PREFACE | | | | | | |--|---|--|--|--|--| | | | | | | | | George A. Baker, Jr. | | | | | | | I. Introduction II. Formal Convergence Theory III. Special Function Examples IV. Some Applications to Physical Problems V. Generalization of the Padé Approximant Method to Include Information at Two or More Points References | 1
3
27
34
54
56 | | | | | | Theory of the Giant Dipole Resonance | | | | | | | W. Brenig | | | | | | | I. Introduction II. Experimental Methods and Results III. Expressions for Cross Sections IV. The Response Function V. Sum Rules and Mean Energies VI. The Liquid Drop Model VII. The Shell Model | 59
60
66
76
78
81
91 | | | | | | VIII. The Extended Shell Model IX. Effective Forces and "Renormalization" | 93
96 | | | | | | X. Numerical Results XI. The Width of the Giant Resonance References | 101
106
112 | | | | | | The Optical Model | | | | | | | Alexander L. Fetter and Kenneth M. Watson | | | | | | | I. Introduction II. Formal Properties of the Optical Model III. Optical Model for High Energy Scattering IV. Generalizations of the Optical Potential V. The Optical Potential at Low Energy VI. The Optical Potential in the T Approximation References | 115
117
139
162
164
177
191 | | | | | ix x CONTENTS | Hydromagnetic Equilibrium and Stability | | |---|----------------------| | John M. Greene and John L. Johnson | • | | I. Introduction | 19 | | II. Equilibria | 19 | | III. Stability | 22 | | IV. Fields of Future Interest | 2 | | References | 24 | | The Heavy Ion Transfer Reaction | | | K. R. Greider | | | I. Introduction | 24 | | II. Formal Theory | 2: | | III. Evaluation of Matrix Elements | 20 | | IV. Discussion and Comparison of the DWBA and the TMA | 20
2 ⁻ | | V. Extensions of the Theory VI. Summary | 28 | | References | 28 | | Elastic Scattering of Electrons by Atoms | | | Marvin H. Mittleman | | | I. Introduction | 28 | | II. The Equivalent Potential Formalism | 28 | | III. Inclusion of the Pauli Principle | 29 | | IV. Numerical Techniques and Results | 30
31 | | V. Generalizations of the Equivalent Potential References | 3.
3: | | References | 3. | | Author Index | 3: | | Subject Index | 32 | | | | | 195
199
222 | | | | | |-------------------|---|---|--|--| | 240 | | | | | | 242 | | , | | | | | | | | | | | | | | | | 245
250 | | | | | | 262
268
276 | | | | | | 276
280 | | | | | | 281 | | | | | | | | | | | | | | | | | | 283
286 | | | | | | 299 | | | | | | 308
312
314 | | | | | | | | | | | | 317 | | | | | | 322 | • |