Contents

	Preface	v	
1.	GENERAL MAGNETOIONIC THEORY		
	1.1 Introduction	1	
	1.2 Basic Equations	2	
	1.3 The Appleton-Hartree Formula	4	
	1.4 Energy Considerations	7	
	1.5 The Principal Axis	9	
	1.6 The Booker Quartic	11	
2.	SOME APPLICATIONS OF MAGNETOIONIC		
	THEORY	15	
	2.1 Some Limiting Formulas	15	
	2.2 Q. L. and Q. T. Approximations	18	
	2.3 Refractive Index and Ray in Anisotropic Media	19	
	2.4 Reflection from a Stratified Magnetoplasma	23	
	2.5 Some Specific Results for Reflection from a Stratified Magnetoplasma	d 29	
3.	ELEMENTARY BOLTZMANN THEORY FOR THE		
	DIELECTRIC CONSTANT	36	
	3.1 Elementary Kinetic Theory	36	
	3.2 Isotropic Dielectric Constant	38	
	3.3 Anisotropic Dielectric Constant	41	
		vii	

CONTENTS viii

4.	RADIATION FROM A DIPOLE IN A WARM PLASMA		
	4.1 Some Kinetic Theory Considerations4.2 The Radiated Power	45 49	
	4.3 Comparison with a Hydrodynamic Model	53	
5.	RADIATION FROM AN ANTENNA IN WARM PLASMA	55	
	5.1 The Hydrodynamic Approach	55	
	Compressible Plasma	59	
6.	BOUNDARY EFFECTS FOR WAVES IN WARM PLASMA	68	
	(1) Introduction	20	
	6.2 The Two-Sided Distribution Function and the Plasma	00	
	6.3 Some Extensions and a More General Boundary	09	
	Condition	75	
	6.4 Radiation from a Spherical Aperture Antenna	77	
	6.5 The Slotted Sphere	82	
	Appendix: Evaluation of $\int v_x F d^3 v = V$	92	
7.	HYDRODYNAMIC THEORY FOR PROBES IN WARM PLASMA	95	
	7.1 Introductory Remarks	95	
	7.2 Reduction to Quasistatic Form	96	
	7.3 The Spherical Probe	98	
	7.4 Influence of a Vacuum Sheath	102	
	7.5 AC Probe in Cylindrical Geometry	105	
8.	WAVES IN INHOMOGENEOUS WARM PLASMA	110	
	8.1 General Remarks	110	
	8.2 Analysis for Inhomogeneous Column	112	
	8.3 The Homogeneous Plasma Cylinder as a Special Case	113	
	8.4 The Parker, Nickel, and Gould Numerical Solution	116	

		CONTEN	
	8.5	Other Approaches	118
	8.6	Limit of a Sharp Boundary	121
9.	WA	VES IN A WARM ANISOTROPIC PLASMA	125
	9.1	The Landau-Bernstein Approach	125
	9.2	Isotropic Limit	129
	9.3	Dispersion Relation for Plasma Waves with Arbitrary	
		Direction of B_0	130
	9.4	Conductivity Tensor for the General Case	133
	9.5	Final Remarks	136
	Auti	hor Index	141
	Subj	iect Index	143

ix