Contents

Preface vi

chapter 1 What Is a Plasma? 1

chapter 2 Phase Space, Distribution Functions, and Average Values 8

2-1	Introduction	8	
2-2	Phase Space	8	

- 2-3 Distribution Functions 9
- 2-4 Average Values 14

chapter 3 Random Current Density and Kinetic Pressure 19

- **3-1** Introduction *19*
- 3-2 Random Current Density 20
- **3-3** Kinetic Pressure 22
- viii

chapter 4 The Equations of Plasma Physics 26

- **4-1** Introduction 26
- 4-2 Maxwell's Equations 27
- 4-3 Hydrodynamic Equations 28
 - 4-3-1 Introduction and Assumptions 28
 - 4-3-2 The Momentum Transfer Equations 28
 - 4-3-3 The Continuity Equations 31
 - 4-3-4 Discussion 33
- 4-4 The Boltzmann Equation 33
- 4-5 Current Densities and Charge Densities 37

chapter 5 The Behavior of Charged Particles in Electric and Magnetic Fields 41

- 5-1 Introduction 41
- **5-2** The Motion of Charged Particles in the Absence of Collisions 42
 - 5-2-1 Static Uniform Electric Field 42
 - 5-2-2 Static Uniform Magnetic Field 43
 - 5-2-3 Perpendicular Static Uniform Electric and Magnetic Fields 46
 - 5-2-4 The Motion of Guiding Centers 49
 - 5-2-5 Nonuniform Magnetic Fields 51
 - 5-2-6 The Spatially Uniform Time-varying Magnetic Field 61
- **5-3** The Fluid Approach with Collisions 64
 - 5-3-1 Assumptions and General Derivation 64
 - 5-3-2 Uniform Static Electric Field 65
 - 5-3-3 Static Electric and Magnetic Fields. $\nu_c = 0$ 66

x Contents

5-3-4	Static Electric and Magnetic Fields	
	with Collisions 66	
5-3-5	Polarization Drift. $\nu_c = 0, \ \omega \ll \omega_b$	67

- chapter 6 Orbit Theory 72
- 6-1 Introduction 72
- 6-2 The Principles and Validity of Orbit Theory 73
- 6-3 Drift Velocities and Current Densities 76
- 6-4 A Simple Stationary State 77
- 6-5 A Simple Time-varying State 79
- 6-6 Discussion 83

chapter 7 The Interaction of Electromagnetic Waves with Plasmas 86

- 7-1 Introduction 86
- 7-2 Equations and Analysis 86
- 7-3 Results and Conclusions 91
 - 7-3-1 Plasma Propagation in the Absence of a Static Magnetic Field. $\nu_c = 0$ 91
 - 7-3-2 Plasma Propagation Perpendicular to a Static Magnetic Field. $E_y = E_x = 0$, $\nu_c = 0$ 93
 - 7-3-3 Plasma Propagation in the Direction of a Static Magnetic Field. $E_z = 0$, $\nu_c = 0$ 93
 - 7-3-4 Plasma Propagation with Collisions. $B_{0z} = 0$ 96
- 7-4 The General Approach 97
- **7-5** Assumptions and Consequences 98

chapter 8 Magnetic and Kinetic Pressures 102

- 8-1 Introduction 102
- 8-2 Derivation 102
- **8-3** Discussion 106

chapter 9 Plasma Sheaths and the Debye Length 108

9-1	Introduction	108
-----	--------------	-----

- 9-2 The Plasma Sheath 110
- 9-3 The Debye Length 113

chapter 10 Collisions and Radiation 117

- **10-1** Introduction *117*
- **10-2** Collisions *117*
 - 10-2-1 General 117
 - 10-2-2 Elastic and Inelastic Collisions 118
 - 10-2-3 Coulomb and Non-Coulomb Collisions 118
 - 10-2-4 Collision Cross Section, Mean Free Path, and Collision Frequency 119
 - 10-2-5 Collisions and the Equations of Motion: The Momentum Transfer Equation 125
 - 10-2-6 Collisions and the Equations of Motion: The Boltzmann Equation 128
- **10-3** Radiation *130*
 - 10-3-1 General 130
 - 10-3-2 Excitation and Recombination Radiation 131
 - 10-3-3 Bremsstrahlung 131
 - 10-3-4 Cyclotron Radiation 132
 - 10-3-5 Black-body Radiation 133
 - 10-3-6 The Observation of Radiation as a Diagnostic Technique 133

xii Contents

chapter 11 Longitudinal Oscillations of Plasma Electrons 138

- **11-1** Introduction *138*
- **11-2** The Hydrodynamic Approach: Zero-temperature Theory 139
- **11-3** The Boltzmann Equation Approach: Finite-temperature Theory 142

chapter 12 Longitudinal Oscillations of Plasma Ions 147

12-1	Introduction	147
12-2	Derivation	147
12-3	Remarks	151

chapter 13 Hydromagnetic Waves in Plasmas 153

- 13-1Introduction15313-2Magnetoacoustic Waves15413-3Alfvén Waves159
- **13-4** Alternative Derivations 162

chapter 14 Diffusion, Mobility, and Transport Phenomena 165

14-1 Introduction 165

14-2	Diffusion and Mobility from the Momentu	m Transfer
	Equation 168	
14-3	Transport Theory:	
	The Anisotropic Distribution Function	171
14-4	Diffusion from the Boltzmann Equation	174
14-5	Mobility from the Boltzmann Equation	176
14-6	Heat Flow from the Boltzmann Equation	179
14-7	An Equation for Particle Density 181	
14-8	Discussion 181	

chapter 15 The Pinch Effect 184

15-1	Introduction 184	
15-2	The Quasi-equilibrium Pinch	18 5
45 0	The Demonstration 100	

15-3 The Dynamic Pinch 190

chapter 16 Position-space Plasma Instabilities 194

16-1	Introduction	194
16-2	Instabilities	194
16-3	Discussion	199

chapter 17 Velocity-space Plasma Instabilities 201

- **17-1** Introduction *201*
- 17-2 Growing and Decaying Longitudinal Plasma Oscillations 202
- **17-3** Discussion *205*

xiv Contents

appendix A The Derivation of the Momentum Transfer Equation and the Continuity Equation from the Boltzmann Equation 209

appendix B The Frictional-force Term and the Effective Collision Frequency 215

appendix C Vector Relations 218

C-1Vector Identities218C-2The Vector Quantity $(\mathbf{B} \cdot \nabla)\mathbf{A}$ 218

appendix D Elementary Tensor Operations 220

appendix E Physical Constants 222

Index 223