Contents

.

1.	GEN	NERAL EQUATIONS AND CONSERVATION RELATIONS	1
	1.1	Basic Equations	3
	1.2	Classification of Shock Structures	5
		(a) Laminar shocks, 5	
		(b) Turbulent shocks, 6	
		(c) Mixed structures, 7	
	1.3	Conservation Relations and Jump Conditions	7
	1.4	Entropy	9
	1.5	More Conservation Laws and Downstream Memory of	
		Shock Turbulence	10
	1.6	Rankine-Hugoniot Relations for Maxwellian Distributions	11
		(a) Rankine-Hugoniot relations in the high Mach number	
		limit, 13	
		(b) Rankine-Hugoniot relations for perpendicular and	
		parallel magnetic shocks, 14	
		(c) Rankine-Hugoniot relations for oblique magnetic	
		shocks, 15	
2.	HE	URISTICS OF LAMINAR SHOCK WAVES	19
	2.1	Comments on Small Amplitude Nonlinear Waves	21
	2.2	Dispersion Relations for Low- β Plasma Waves	23
	2.3	Magnetosonic and Ion Sound Waves in Hot Plasmas	25
3.	MA	GNETOSONIC WAVES, SHOCKS, AND SOLITONS	29
	3.1	Nonlinear Magnetosonic Waves in Cold Plasma	29
	3.2	Dissipation and the Appearance of Magnetosonic Shock	49
	5.2	Solutions	34
		Soundail	54
			vii

viii Contents

	3.3	 Magnetosonic Solitons and Shocks in Hot Plasmas (a) Magnetosonic solitons in hot plasmas, 40 (b) Magnetosonic shocks in hot plasmas, 43 (c) Motion of the ions in hot plasma shocks, 45 (d) Comments on foot-structure and the stability of reflected ions, 48 (e) Mach number range for solitons in hot plasmas, 49 	38	
4.		IQUE AND PARALLEL PROPAGATION OF DROMAGNETIC SOLITONS AND SHOCKS	57	
	4.1 4.2	Oblique Solitons and Shocks in a Zero-Temperature Plasma Whistler Solitons ($\theta = 0$) in Zero-Temperature Plasma (a) Zero-angular momentum ($L = 0$), 66	57 63	
5.	OBLIQUE SHOCKS IN FINITE-TEMPERATURE PLASMA			
	5.1 5.2	Fluid Equations and Dissipation Dimensionless Two-Fluid Equations	70 74	
	5.4	(a) Preliminary discussion of the equations, 76	/4	
	5.3	Particle Motion Analogy	77	
	5.4	 Classification of Shock Structures for Oblique Propagation (a) Starting conditions, 80 (b) The shape of the potential near the origin, 84 (c) Examples of initial behavior, and relation to the dispersion curves, 87 	80	
	5.5	Final State of the Plasma	89	
	5.6	Numerical Examples	92	
6.	ELE	CTROSTATIC SHOCKS AND SOLITONS	99	
	6.1 6.2	Ion Acoustic Shocks and Solitons Oscillatory Shock Structure with Particle Reflection or	100	
		Landau Damping (a) Particle reflection, 103 (b) Landau damping, 105	103	
	6.3	Monotonic Shock Transition with Trapped Electrons	106	
7.	MICROTURBULENCE GENERATED BY INSTABILITIES IN SHOCKS			
	7.1 7.2 7.3	Electrostatic Instability of Diamagnetic Currents in Shocks Strong Current Instability Conditions for Onset of Strong Instability in Magnetosonic Shocks	114 115 119	
	7.4	Snocks Comments on the Self-consistent Shock Structure Problem	119	

	Content	s ix			
7.5	Weak Instability Driven by Drifts in a Magnetosonic Wave	123			
7 4	(a) Quasi-linear treatment, 126 5 Two Ion-Stream Instability in Magnetosonic Shocks	129			
7.6 7.7		129			
/	Shocks at High Mach Numbers	131			
7.8	0	134			
8. TU	JRBULENT SHOCK STRUCTURES	138			
8.1	Electrostatic Shocks	139			
	(a) Downstream state, 141				
	(b) Comments on an interpolation model for ion-sound shocks, 142				
8.2		144			
8.3	Numerical Studies of Electrostatic Shocks	149			
8.4	Turbulent Shocks in Plasmas in a Magnetic Field	151			
9. PH	RECURSOR AND WAKE EFFECTS	154			
9. 2	Precursor Plasma Waves	155			
	(a) Stationary precursor whistlers (Region IV _i of Fig. 5.3), 150	5			
9.2	1	159			
	(a) Stochastic acceleration of ions in shock microturbulence, 1	.60			
0.4	(b) Electron acceleration, 161	162			
9.:	3 Comments on Radio Emission by Shocks (a) Plasma radio emission from inside a shock, 162	102			
	(b) Emission from plasma in the wake of a shock, 163				
SOM	E NOTATION	167			
AUT	AUTHOR INDEX 1				
SUB.	JECT INDEX	173			