CONTENTS

Prefa	ce
Intro	duction
Topol	ogy of Wave-normal Surfaces
1-1	Introduction
1-2	The Dielectric Tensor
1 - 3	The Dispersion Relation
1-4	Polarization and Phase Relations
1-5	Cutoff and Resonance
1-6	The Clemmow-Mullaly-Allis Diagram
1-7	Topological Genera of Wave-normal Surfaces
1-8	Labeling of Wave-normal Surfaces
1-9	Transitions of Topological Genera
1-10	Transitions of Wave-normal-surface Labels
1 - 11	Wave-normal Surfaces for a Plasma with Finite
	Temperature
	Problems
) Wave	es in a Cold Uniform Plasma
- 2-1	Introduction
2-2	Definitions and Simple Relations
2-3	Clemmow-Mullaly-Allis Diagram for a Two-com-
	ponent Plasma
2-4	Propagation Parallel and Perpendicular to \mathbf{B}_0

viii CONTENTS

2-5	Hydromagnetic Waves of Alfven and Astrom	32
2-6	Ion Cyclotron Waves	34
2-7	The Hybrid Resonances	37
2-8	The Appleton-Hartree Dispersion Relation	38
2-9	Ion Acoustic and Electrostatic Ion Cyclotron Waves	41
	Problems	43

3 Energy Flow and Accessibility

3-1	Introduction	45
3-2	Energy Transfer	46
3-3	Group Velocity	49
3-4	Some Geometrical Relations	52
3-5	Ray Tracing in Inhomogeneous Media	55
3-6	Transport of Amplitudes	59
3-7	Accessibility	60
3-8	Calculations of Accessibility	62
	Problems	65

Kruskal-Schwarzschild Solutions for a Bounded Plasma

4-1	Introduction	67
4-2	The Boundary Equations	70
4-3	An Equilibrium Solution	73
4-4	Linearization of the Equations	74
4-5	Solution of the First-order Boundary Equations	76
4-6	Solution of the First-order Plasma Equations	78
4-7	The Rayleigh-Taylor Instability	79
	Problems	80

5 Free and Forced Oscillations of a Cold Cylindrical Plasma

		~~~
5 - 1	Introduction	82
5 - 2	Alfven and Ion Cyclotron Waves in a Cylindrical	
	Plasma	83
5-3	The Vacuum and Boundary Equations	85
5-4	Solution of the Steady-state Problem	87
5-5	Forced Oscillations	89
5-6	Wave Generation by an Induction Coil of Finite Length	91
5-7	Evaluation of the Contour Integral	93
5-8	Interretation of Results	96
5 - 9	Coil Impedance and Plasma Loading	99
5 - 10	Plasma Loading for Alfven and Ion Cyclotron Waves	101

		CONTENTS	ix
	5-11	An Incomplete Bibliography of Related Work Problems	102 104
6	Plasm	a Models with Discrete Structure	
O	6-1	Introduction	107
	6-2	The Two-stream Instability	109
	6-3	The Beam Equations	110
	6-4	Solution for Two Beams	112
	6-5	The Dawson Modes for a Plasma of Many Beams	114
	6-6	The Trapping of Charged Particles	118
	6-7	A Nonlinear Plasma Wave	119
	6-8	Beam-excited Plasma Oscillations	121
	6-9	Nonlinear Oscillations of Many Charge Sheets	124
		Problems	128
7	Longit	udinal Oscillations in a Plasma of Continuous Structure	
	7-1	Introduction	131
	7-2	A Physical Picture of Landau Damping	132
	7-3	Environments for Valid Landau Damping	136
	7-4	The Collisionless Boltzmann Equation	140
	7-5	Analytic Continuation of the Integrals	143
	7-6	The Dispersion Relation	146
	7-7	The Van Kampen Modes	147
	7-8	The Nyquist Criterion for Instability	148
	7-9	The Two-stream Instability in a Hot Plasma	153
		Problems	155
0	Derive	ation of the Theory for a Hot Plasma in a Magnetic Field	
0	8-1	Introduction	158
	8-2	A Physical Picture of Cyclotron Damping	159
	8-3	Magnetic Trapped-particle Modes	162
	8-4	Solution of the Boltzmann Equation	167
	8-5	Transformation from Lagrangian to Eulerian Coor-	
		dinates	170
	8-6	The Average over Perpendicular Velocities	172
	8-7	Transformation to Rotating Coordinates	174
	8-8	Exact Moments for a Maxwellian Distribution	
		Shifted in $v_z$	176
	8-9	Approximate Moments for a Maxwellian Plasma	182
		Problems	183

### x CONTENTS

0	Some	Applications of the Equivalent Dielectric Tensor	
7	9-1	Introduction	185
	9-2	The Mobility Tensor	186
	9-3	The Equivalent Dielectric Tensor	189
	9-4	Dispersion Relations for Parallel Propagation	193
	9-5	Transit-time Damping in the Magnetosonic	
		Wave	196
	9-6	Magnetosonic Instability due to Anisotropic Elec- tron Pressure	199
	9-7	Magnetosonic Overstability due to Current Flow	200
	9-8	The Marginal State for the Magnetosonic Wave	203
	9-9	Power Absorption by Collisionless Processes	204
	9-10	Transit-time Magnetic Pumping	206
	9-11	Cyclotron Overstability and Damping	207
	9-12	Ion Cyclotron Overstability Due to Runaway Elec-	
		trons	208
	9-13	Cyclotron Overstability Due to Pressure Anisotropy	211
	9-14	Electron and Ion Acoustic Waves	213
	9 - 15	Enhanced Diffusion from Ion Wave Instabilities	219
	9-16	Electrostatic Waves in a Magnetic Field	223
		Problems	233
10		ction and Absorption aves in a Hot Inhomogeneous Plasma	
		-	
	10-1	Introduction	235
	10-2		237
	10-3	Solutions to the Wave Equation near a Turning	
		Point	240
	10-4	Asymptotic Solutions	243
	10-5	5	244
	10-6	The Absorption Layer	246
	10-7	Evanescence and Absorption	249
	10-8	Resistivity and Collision Corrections to the Dielec-	

10-8Resistivity and Collision Corrections to the Dielectric Tensor25010-9Examples of Evanescence and Absorption253Problems258Bibliography261Index269

List of Symbols

277