Preface		ix
1	The Plasma State	1
	Suggested Reading	12
2	Collisions and Collisional Processes	
٨	Flowertown Concente	14

14
17
21
23
27
36
36

3 The Motion of Isolated Charged Particles

A.	The Motion of a Charged Particle in a Magnetic Field	39
В.	Crossed Electric and Magnetic Fields	41
C.	Gravitational Fields	43
D.	Magnetic Field Gradients—Magnetic Mirrors and Cusps	44
E.	The Effects of AC Electric Fields	52
	Suggested Reading	65
	Problems	66

۷

4 The Beginnings of Collective Phenomena—Plasma Statistical Mechanics

Α.	Fundamental Definitions	69
B.	Conservation Laws for Systems	75
C.	Density and Distribution Functions and Averages	77
D.	Liouville's Theorem	80
E.	The Microcanonical Ensemble	83
F.	Development of the Distribution Laws	84
G.	Velocity, Speed, and Energy Distribution Functions	93
H.	Application of Ensemble Theory to a Plasma	96
	Suggested Reading	98
	Problems	99

5 Further Aspects of Collective Phenomena: Statistics of Collisions and Fluid Behavior

А.	Adiabatic Invariants and Constants of the Motion	101
В.	Hamilton–Jacobi Theory	111
C.	Collisions in the Boltzmann Equation: Fokker-Planck Methods	115
D.	Diffusion and Mobility from the Boltzmann Equation	119
E.	The Moments of the Boltzmann Equation	124
	Suggested Reading	130
	Problems	130

6 Simple Applications of the Fluid and Statistical Models of a Plasma

A.	Hydromagnetics (Magnetohydrodynamics)	134
B.	Hydromagnetic Equilibrium	138
C.	Plasma Diamagnetism	141
D.	Magnetic Confinement	143
E.	Hydromagnetic Wave Motion and Diffusion	146
F.	Plasma Parameters	149
G.	Wave Propagation in Plasmas—Introductory Remarks	157
	Suggested Reading	163
	Problems	164

7 Waves in Cold Plasmas

A.	Waves and the Wave Equation	167
В.	Eigenvalues of the RLC Circuit (Ordinary Differential Equations)	169

vi

С.	Eigenvalues of the Wave Equation (Partial Differential Equations)	170
D.	Eigenvalues of Waves in Cold Plasmas—The Dispersion Relation	173
E.	Representations of the Eigenvalues	179
F.	Nonzero Temperature Effects	193
	Suggested Reading	199
	Problems	200

8 Waves (Stable and Unstable) in Hot Plasmas

А.	Transform Theory	203
B.	Applications of Transform Theory to the Wave Equation and	
	Boltzmann Equation	208
C.	The Electrostatic and Long-Wavelength Approximation	211
D.	The Dispersion Relation for Longitudinal Electrostatic Waves, I	213
E.	Complex Contour Integration and Analytic Continuation	217
F.	The Dispersion Relation for Longitudinal Electrostatic Waves, II	222
G.	The Nature of the Eigenmodes—Landau Damping	227
H.	Waves and Instabilities—Criteria	230
I.	Branch Lines	234
J.	Position-Space Damping	236
K.	Confinement and Equilibrium of a Plasma—Hydrodynamic	
	and Microinstabilities	242
	Suggested Reading	244
	Problems	245

9 Plasma Kinetic Theory—Nonequilibrium Statistical Mechanics

А.	Collisional Velocity Averages	249
B.	Validity of Collisional Models	263
С.	Development of the Bogoliubov, Born, Green, Kirkwood, Yvon	
	(BBGKY) Hierarchy	265
D.	Cluster Expansion	274
	Suggested Reading	284
	Problems	285

10 Radiation Processes and Correlation Functions

А.	Generalized Emission and Absorption Processes	286
B.	Radiation Fields from a Charged Particle	291
C.	The Radiation Spectra	297
D.	Bremsstrahlung	300
E.	Cyclotron Emission	306
F.	Fluctuations and Correlations in Plasmas	311
	Suggested Reading	318
	Problems	319

Appendix

viii

A.	Frequently Used Physical Constants	321
B.	Useful Vector Indentities	322
C.	Units and Dimensions	323
Ini	DEX	324