Table of Contents

CHAPTER 1. THE PARTICLE KINETICS OF PLASMAS

1–1	Plasmas and	plasma p	physics .				•	•	•	•		•	•	1
1–2	Plasma kine	tics .				•	•	•	•	•	•	•	•	7
	1-2.1 Plasm	nas a <mark>nd</mark> g	ases: lo	calized	1 equ	iatio	ns	•	•	•	•	•	•	7
	1-2.2 Velo	city distri	bution f	functio	on an	d th	e Bo	ltzr	nan	n e	qua	tior	1	9
	1-2.3 The	Vlasov eq	uation								•	•	•	11
	1-2.4 Velo	city mom	ents and	d relat	ed eq	luati	ons					•		11
	1-2.5 Colli	sions and	l the dis	tributi	on fi	uncti	on	•			•			13
	1-2.6 Cold	lelectron	momen	tum e	quati	on	•	•		•	•			13
	1-2.7 Long	g-range C	oulomb	forces	in p	olasm	nas							14
	1-2.8 The	Fokker-P	lanck e	quatio	n.								•	16
	1–2.9 The	Liouville	equatio	n.										17
1–3	Interaction	of electro	magneti	c field	s wit	h pla	isma	ıs						19
	1-3.1 Elect	tron flow	and cur	rent in	ı pla	smas	з.							19
	1-3.2 The	electroma	ignetic f	field		•	•					•		21
	1-3.3 Way	es in cold	l plasma	as.				•						22
14	Plasma prot	perties in	the pres	sence o	of sta	tic n	nagr	etic	fie	lds		•	•	25
1-5	Limit of va	lidity for	cold p	lasma	wave	e equ	iatio	ons;						
	thermal effe	ects neglig	rible					•		•				27
1–6	Collisional	olasma he	ating by	electr	ic fiel	lds								28
1_7	Diffusion								•					31
1_8	Summary		• •	• •	•	• •								35
1-0 1_0	Jiseful num	here	• •	• •	•	•••	•	•	•			•		41
1-9	O Ser ur munn		• •	•••	•	•••	•	•	•	•	•	•	•	••
IAPTER	2. THE BO	OLTZMA	NN E	QUAT	ION	Ī								

Сна

2

.

2–1	The Boltzmann equation	•	•	•	46
22	Preliminary remarks on solving the Boltzmann equation	•	•	•	49

viii TABLE OF CONTENTS

2–3	Transport quantities—definitions	51
2-4	Collision terms-definitions	55
2–5	Boltzmann's transport equation and the conservation equations .	57
2–6	The collision terms	62
2–7	The expansion of the distribution function	64
2–8	The Liouville equation	65
CHAPTER 3	3. EXPANSION OF THE ELECTRON DISTRIBUTION FUNCTION: SPHERICAL HARMONICS AND TIME HARMONICS	
3–1	Historical and introductory	70
3–2	Elastic collision theory	73
3–3	First-order expansion.	77
3-4	Applications of the expanded equation	94
3–5	Equipartition of energy for nonsteady-state situations	104
3–6	Expansion to terms higher than $l=1$	109
3–7	Intrinsic velocity form for the Cartesian tensor equations	113
Chapter	4. APPLICATIONS OF THE BOLTZMANN EQUATION TO ELECTRON-ATOM INTERACTION	
4-1	General relations	119
	4–1.1 Basic assumption and parameters	119
	4-1.2 The basic relationships when no magnetic field is present .	122
	4–1.3 Basic relationships including a uniform	
	static magnetic field	124
42	Constant collision frequency	127
4–3	Constant mean free path	128
4-4	Derivation of various distribution functions	129
4–5	Maxwellian distribution	138
4-6	Druyvesteyn distribution function	147
4-7	Constant mean free path and constant energy-loss factor	
	the case of strong fields	149
4–8	Collision frequency and energy-loss factor proportional	
	to some power of velocity. High- and low-frequency limits	153
49	Effective collision frequencies from magnetic field measurements .	155
Chapter	5. ELASTIC COLLISIONS AND SCATTERING CROSS SECTIONS	
5–1	The mean free path of an electron based on kinetic theory	161
5–2	Total collision cross section, probability of collision,	
	differential cross section, and total collision frequency	162

5–3 Probability of collision and collision frequency	
for momentum transfer	164
5-4 Experimental methods for determining collision	
cross sections of electrons with neutral particles	165
5-5 Collision cross sections of electrons with N_2 , O_2 , H_2 ,	
NO, CO_2 , A, He, and Ne \ldots \ldots \ldots \ldots \ldots \ldots	175
5-6 The center-of-gravity system and the classical theory of scattering by	
a central force	18 9
5-7 Quantum-mechanical formulation of scattering	193
CHAPTER 6. BREMSSTRAHLUNG AND HIGH-FREQUENCY	
ELECTRICAL CONDUCTIVITY	
6–1 Particle trajectories in the classical treatment of	
electron-ion collisions	204
6–2 Total power radiated by an electron-ion encounter	208
6-3 Spectral dependence of bremsstrahlung	209
6-4 Bremsstrahlung at low frequencies	217
6-5 Average over impact parameters	218
6-6 Quantum-mechanical formulas	223
6–7 Bremsstrahlung from a Maxwellian distribution	228
6-8 The high-frequency electrical conductivity of a fully ionized plasma	236
CHAPTER 7. COULOMB COLLISIONS AND THE FOKKER-	
PLANCK EQUATION	
7–1 The Fokker-Planck Equation	243
7-2 Simple evaluation of the coefficients, valid for electron-ion collisions	251
7-3 The screening factor	258
7-4 Formulation of the Fokker-Planck equation in terms of Rosenbluth	
potentials	269
7-5 Relationships between, and evaluations of, the Rosenbluth potentials	273
7 (The set of Deltas Directory and the Deltas and the	077

The reduced Fokker-Planck equation and the Boltzmann equation	211
The transport conservation equations	285
Relaxation of an isotropic system of identically charged particles .	295
Relaxation of an anisotropic pressure or temperature	298
Energy relaxation between electrons and ions	303
Relaxation of a fast ion in a plasma	307
	The reduced Fokker-Planck equation and the Boltzmann equation The transport conservation equations

CHAPTER 8. TRANSPORT PROPERTIES OF PLASMAS

8–1	Conductivity for a slightly ionized gas	•	•	•	•	•	315
8–2	Conductivity when electron-ion effects are included	•			•		317

x TABLE OF CONTENTS

8–3	Form of the conductivity matrix including all interactions	318
8-4	Conductivity values for a highly ionized gas with	
	a Maxwellian distribution	322
8–5	Conductivity for any degree of ionization with	
	a Maxwellian distribution	328
86	Conductivity for a completely ionized gas including the ion motion	349
8–7	Transport coefficients for the direct current and	
	energy flow in a completely ionized gas	361
88	The ion pressure tensor in a fully ionized plasma	374
8–9	Experimental determinations of the transport coefficients	384
8–10	Runaway and hysteresis	400
CHAPTER 9	9. THE FOUNDATIONS OF MAGNETO-	
	HYDRODYNAMICS (MHD)	
9–1	Simple concepts from particle motion in uniform fields	422
9–2	Plasma dynamics: the velocity moments and the plasma equations .	425
9–3	Magnetohydrodynamics (MHD) validity	435
9-4	Freezing of magnetic lines	448
95	MHD equilibria	451
9-6	Magnetohydrodynamic shock transition conditions	454
9–7	Hvdrodynamics with viscosity: the Navier-Stokes	
	relationship for plasmas	462
CHADTER	10 COLLISIONIESS DIASMAS IN STRONG	
CHAFIER	MAGNETIC FIELDS—THE CGL SYSTEM	
10–1	Development of the CGL pressure tensor	472
10-2	Momentum equation with CGL pressure	477
10-3	Single-particle transverse drift velocity	479
10-4	Total transverse current including polarization and magnetization .	483
10-5	Longitudinal acceleration and the magnetic moment	487
10–6	Limitations of the CGL system	491
Appendix	. Vector and Tensor Notation and Relations	493
AUTHOR	R INDEX	4 99
SUBJECT	$\mathbf{T} \mathbf{INDEX} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots $	505

Vector and Tensor Notation Front end papers