Contents

Spectroscopic Methods of Plasma Diagnostics

by W. Neumann

Chapter 1.	Introduction	3
Chapter 2.	Method for Determining the Emission Coefficients and Line Profiles	5
Chapter 3.	Classification of Spectra	87
Chapter 4.	Calculation of the Composition of a Thermal Plasma with a Boltzmann Distribution of the Electronic Levels	95
Chapter 5.	Determination of Plasma Parameters via the Intensity of Spectral Lines, emitted by Atoms and Ions in an Optically Thin Layer. Plasma in Thermal Equilibrium	119
Chapter 6.	Determination of Temperatures and Particle Densities of Plasmas Dis- playing Appreciable Absorption	198
Chapter 7.	Determination of Plasma Parameters from the Band Spectrum of Diatomic Molecules	237
Chapter 8.	Determination of Particle Densities in Plasmas by Means of the Refractive Index. Laser Diagnostics	258
Chapter 9.	Determination of Plasma Parameters by Means of Continuous Radiation	289
Chapter 10.	Determination of Plasma Parameters from Line Profiles. Fading of Spec- tral Lines at the Series Limit and the Problem of the Reduction in the	
	Ionization Energy	324
Chapter 11.	Validity Limits of the Methods of Thermal Spectroscopy discussed in Chapters 5 to 10. Some Special Methods of Nonthermal Spectroscopy	404
Bibliograph	y	436

Magnetohydrodynamic Waves

(Waves in Ideal Media)

by K. Baumgärtel and G. Wallis

Chapter 1.	Introduction
Chapter 2.	Propagation of Plane Waves in Homogeneous Media
Chapter 3.	Interaction of MHD-Waves with Surfaces of Discontinuity. Propagation
	in Inhomogeneous Media
Chapter 4.	Propagation in Inhomogeneous Media
Chapter 5.	Appendix: Matrices
Bibliograph	y

Contents

Validity Conditions for Local Thermodynamic Equilibrium

by H. W. Drawin

Chapter 1.	Introduction	593
Chapter 2.	Partial L.T.E. in Time-Independent and Homogeneous Optically Thin Plasmas	597
Chapter 3.	Complete L.T.E. in Time-Independent and Homogeneous Optically Thin Plasmas.	606
Chapter 4.	Influence of Resonance Absorption on the Establishment of Complete L.T.E. in Homogeneous Stationary Plasmas	608
Chapter 5.	Influence of Resonance Absorption on the Establishment of Partial L.T.E. in Homogeneous Stationary Plasmas	611
Chapter 6.	Influence of Heavy Particle Collisions on the Equilibrium Population of Highly Excited Levels	614
Chapter 7.	Validity of Partial L.T.E. in Quasi-Stationary and Quasi-Homogeneous Plasmas (optically thin and thick).	617
Chapter 8.	Relaxation Times for the Establishment of Partial and Complete L.T.E. in Homogeneous Transient Plasmas.	631
Chapter 9.	Relaxation Lengths for the Establishment of Partial and Complete L.T.E. in Stationary Non-Uniform Plasmas	637
Chapter 10.	Perturbation of the Electron Temperature by Externally Applied Electric Fields	646
Chapter 11.	Calculation of Optical Reduction Factors $arLambda_{ii}$ and $arLambda_i$	648
Chapter 12.	Concluding Remarks	657
Bibliograph	y	658
Subject Inde	Эх	661