CONTENTS

VIBRATIONAL – TRANSLATIONAL ENERGY EXCHANGE IN COLLISIONS OF HOMONUCLEAR DIATOMIC MOLECULES

E. E. Nikitin, A. I. Osipov, and S. Ya. Umanskii

Introduction	1
1. The Simplest Model for Vibrational	
Deactivation—the SSH Model	4
2. Interaction Potentials-Models and Quantum	
Mechanical Calculations	11
3. Refined Dynamic Models for Vibrational Deactivation:	
The Hierarchy of Approximations	16
4. Specific Vibrational Deactivation Processes:	
Experiment and Theory	22
5. Conclusion	43
References	44

ELEMENTARY PROCESSES IN NONSYMMETRIC COLLISIONS OF INERT GAS ATOMS

A. Z. Devdariani and A. L. Zagrebin

Int	roduc	tion	49
1.		ed State Terms of Quasimolecules	50
	1.1.	The Effective Hamiltonian for the $X(n_0p^5nl) + Y(^1S_0)$	
		Quasimolecule	50
	1.2.	Matrix Elements of the Effective Hamiltonian.	
		Semiempirical Method for Analyzing	
		Quasimolecular Terms	53

	1.3.	Results of Calculations and Experimental Data	61
2.	Proce	sses Determined by Elastic Collisions of Atoms	79
	2.1.	Diffusion of Excited Atoms in Mixtures of Inert	
		Gases	80
	2.2.	Collisionally Induced Satellites of Forbidden	
,		Lines and Radiative Quenching of Metastable States	82
	2.3.	Collisional Depolarization of Excited Atoms	92
Co	onclusi	on	98
Re	eferenc	es	98

PARAMETERS OF GASEOUS DIMERS

B. M. Smirnov and A. S. Yatsenko

Introduction		•	•	•	•			•	•	•	•	•	•			•	•	•		•	•					,	•	•	•	•	•	103
References	•	•			•			•							•	•	•	•	•	•	•	•				,	•	•	•		•	140

CHEMOIONIZATION PROCESSES IN LOW-TEMPERATURE PLASMAS

N. B. Kolokolov and A. A. Kudryavtsev

Introduction	145
1. The Influence of CI Processes on the Electron Energy Distribution	
Function and Other Characteristics of Electron Gases 1	149
1.1. CI Processes and the Electron Distribution	
Function (Local and Nonlocal Regimes) 1	150
1.2. Electron Diffusion, the Ambipolar Electric Field,	
and the Wall Potential Jump When CI Processes	
Are Included 1	164
1.3. CI Processes and the Electron Temperature 1	169
2. Effect of CI Processes on the Kinetics of Level	
Populations, Ionization, and Recombination in	
Low-Temperature Plasmas 1	173
2.1. Plasmas with an Ionization Disequilibrium	173
2.2. Plasmas with a Recombination Disequilibrium 1	179

vi

3.	The F	cole of CI Processes in Engineering Devices	
	and S	cientific Apparatus 18	1
	3.1.	Gas Lasers 18	2
	3.2.	Current-Free Photoplasmas 18	2
	3.3.	Cryogenic Plasmas 18	3
	3.4.	Gas Breakdown 18	3
	3.5.	Determination of the Rates of Elementary	
		Processes from Measurements in Plasmas 18	4
	3.6.	Controlling the Parameters of Current-Free	
		Plasmas	5
Re	ferenc	es	6

PHYSICAL PROPERTIES OF STRONGLY COUPLED PLASMAS

V. S. Vorob'ev and A. A. Likal'ter

Int	troduci	tion	191
1.	Basic	Physical Concepts	193
	1.1.	The Range of Parameters of Nonideal Plasmas	193
	1.2.	The Correlation Radius	197
	1.3.	Flow Level	198
	1.4.	Average Energy of Delocalized Electrons	200
2.	Intera	ction Models	201
	2.1.	Interaction of an Electron with the Nearest Ion	201
	2.2.	Cell Model	205
3.	Kinet	ic Characteristics	205
	3.1.	Three-Body Recombination in Nonideal Plasmas	205
	3.2.	Limiting Formulas for the Electrical Conductivity	209
4.	Meta	llization of an Atomic Gas	213
	4.1.	Quasiatomic Gas	213
	4.2.	Internal Energy Spectrum of a Quasiatom	215
	4.3.	The Energy of a Quasiatomic Gas	218
	4.4.	The Plasma Phase Transition	222
	4.5.	Electronic Properties of Quasiatomic Gases	227
5.	Dens	e Metal Vapor Plasmas	232
	5.1.	Cluster Ions	232
	5.2.	Anomalous Electrical Conductivity	235

5.3.	Strongly Coupled Cluster Plasmas	238
Conclusio	on	241
Reference	es	242

HETEROGENEOUS REACTIONS IN NONEQUILIBRIUM HALOGEN-CONTAINING PLASMAS

D. I. Slovetskii

Introduction	245
1. Adsorption of Halogens and Halogen-Containing	
Particles on the Surfaces of Metals and Semiconductors	251
2. Reactions of Halogen Atoms and Molecules with	
Metal and Silicon Surfaces	258
Interaction of Aluminum with Chlorine and Bromine	272
Interaction of Copper with Chlorine and Bromine	273
Interaction of Platinum with Fluorine Atoms	277
Interaction of Refractory Metals (W, Mo, Ta, Ti) with	
Atomic and Molecular Fluorine	279
Interaction of Molybdenum with Chlorine	281
Interaction of Indium and Lead with Molecular	
Chlorine	282
Reactions of Tungsten and Niobium with XeF ₂	282
Interaction of Silicon with Atomic and Molecular	
Fluorine	283
Interaction of Silicon with Xenon Difluoride	285
Interaction of Silicon with Chlorine	286
3. Ion-Bombardment Stimulated Reactions of Halogens	
with Materials	287
4. The Interaction of Nonequilibrium Halogen-Containing	
Plasmas with Metals and Silicon	301
5. Polymerization in Nonequilibrium Halogen-Containing	
Plasmas	308
Conclusion	311
References	312

viii

THEORY OF THE NONTHERMAL CONTRACTION OF THE POSITIVE COLUMN OF GLOW DISCHARGES

A. V. Eletskii and R. V. Chiflikyan

Introduction	317
1. The Electron Energy Distribution Function in	
Plasmas with a Moderate Degree of Ionization	319
2. Dependence of the Rate Constants for Stepwise	
Ionization on the Degree of Ionization of the Plasma	324
3. Rate Constant for Direct Electron-Impact Excitation	
of Resonance States of Atoms	329
4. Conditions for Nonthermal Contraction of	
Discharges in Inert Gases	335
5. The Radial Distribution of Charged Particles in a	
Contracted Discharge	340
Conclusion	346
References	348