INDEX

ag. 1
Ũ
» 5
» 11
» 22
» 26
» 30
» 34
·// JT
» т1
» 43
» 50
» 55
» 63
» 68
» 79
» 84
» 92
» 99
» 110
» 118
» 120
» 125
» 128
» 135
» 140
» 146
» 149
» 156
» 159
» 165
» 168
» 173

T. STRINGER: Plasma transport in a finite amplitude wave	»	185
B. COPPI et Al.: Anomalous transport model in high density regimes of confined plasmas	»	189
B. COPPI et Al.: Numerical simulation of high density regimes in		
	»	192
B. COPPI et Al.: Resistive internal kink modes	»	199
B. COPPI et Al.: Electron slide-away regime in high temperature	»	202
plasmas	»	206
B. COPPI et Al.: Theory of the ubiquitous mode	»	210
D. SWEETMAN: The effect of ohmic heating current on confinement	»	224
TFR Group: Ohmic heating and electron power balance in TFR presented by R. DEI-CAS	»	227
A. AIROLDI et Al.: Electron distribution in the slide-away regime .	»	235
A. OREFICE et Al.: Electrostatic modes leading to ion heating in the slide-away regime	»	240
G LAMPIS et Al : Prevision of the plasma parameters and regimes	"	240
in the Thor Tokamak	»	246
R. SMITH: Injection systems at the Princeton Plasma Lab	»	250
R. SMITH: Neutral Injection at PPPI, past and present	 »	254
O MORGAN: The development and application of neutral injection	"	234
heating for ORMAK	**	259
O MORGAN: The development of neutral injection heating for large	"	237
Tokamaks and reactors at ORNL	»	264
M. MURAKAMI: Neutral beam injection experiments on ORMAK	•	269
F HOOPER: Neutral beam injection into mirror machines		205
E. HOOPER: High efficiency neutral beams for reactors and advan-	"	279
TED Croupe High power pouter injection heating and improve	»	218
halance in TFR, presented by R DELCAS		281
D. SWEETMAN: The role of neutral injection in reactors	» »	289
M. HAEGI et Al.: Heating of the Frascati Tokamak by means of quasi perpendicular neutral injection	~	293
J. FEIST et Al.: Heating of Wendelstein VII A Stellarator by neutral	"	200
M Drugerte Managements from active fact neutral discussion	»	290
G. LISTER et Al.: Computer simulation of neutral beam injection	»	300
into Tokamaks using Monte Carlo techniques G. HAAS et Al.: Additional heating and refuelling for the ASDEX	»	303
divertor Tokamak	»	308
runaway	»	318
C. COMUCCI et Al.: A steady-state reactor with neoclassical pits	»	324
experimental power reactor	**	326
H. DREICER et Al.: Hot electron production, anomalous absorption and effect of intense electromagnetic fields on inverse broms	"	520
strahlung absorption near the electron plasma frequency .	»	333
H. DREICER: KINETIC approach to plasma end loss from linear		227
T K CHILL at All End loss scaling in onen fall ling	»	551
end plugging		212
C WHAPTONY A SURVISY of recent advances in hear relief further	»	243 249
C. WHARTON: A SURVEY OF recent advances in the charged particle	»	348
beam: application to long solenoid reactors .	»	357
I. SHEFFIELD: Additional heating in JET	»	362
=		