CONTENTS

AN	INTRODU	CTION TO THE ABSORPTION OF LASER LIGHT IN PLASMAS, T.P.	Hughes
1.	Intro	duction	1
2.	Waves	in a Plasma	2
	2.1	Cold Plasma	4
	2.2	Warm Plasma	6
	2.3	Damping of Small Amplitude Longitudinal Waves	9
	2.4	Particle Trapping in Large Amplitude Waves	11
	2.5	Wave Breaking	17
3.	Colli	sional Absorption	21
	3.1	Linear Inverse Bremsstrahlung	21
	3.2	Non-Linear Inverse Bremsstrahlung	24
4.	Param	etric Instabilities	27
	4.1	Parametric Interactions for an Infinite Pump	
		Wavelength	29
	4.2	Development of Instability	37
	4.3	Experimental Evidence for Parametric Instabilities	41
5.	Stimu	lated Brillouin Scattering	42
6.	Raman	Scattering and Two-Plasmon Decay	52
	6.1	Raman Scattering	52
	6.2	Two-Plasmon Instability	57
	6.3	Experimental Evidence for Raman and Two-Plasmon	
		Instabilities	59
7.	Reson	ant Absorption	63
	7.1	Influence of Surface Profile on Resonant Absorption	73
	7.2	Effect of Focussing Optics and Beam Quality	75
	. 7.3	Harmonic Generation and Resonant Absorption	75
8.	İnter	actions Between Interactions	83
Re	ferences		86

LASER RADIATION TRANSPORT AND PONDEROMOTIVE FORCE, P. Mulser

1.	Refra	active Index and Geometrical Optics in Inhomogeneous	
	Plasm	na	91
	1.1	Introduction	91
	1.2	Equations of Motion for Ions and Electrons	93
	1.3	The Optical (WKB) Approximation	96
	1.4	Radial Illumination	100
2.	Elect	ric Field Distribution and Reflection	103
	2.1	Perpendicular Incidence	104
	2.2	Oblique Incidence	105
	2.3	The Stokes Equation	107
	2.4	Electric Field Increase	111
	2.5	Remarks on the Reflection Formula	113
	2.6	Numerical Solution of the Wave Equation	114
3.	Radia	ation Pressure	115
	3.1	Definition	115
	3.2	Normal Incidence of Laser Radiation	117
	3.3	Density Structures Due to Light Pressure in	
		Inhomogeneous Laser Plasmas	121
	3.4	Radiation Pressure Dominated Plasma Flow	124
	3.5	On the Stability of Light Pressure Induced	÷
		Density Structure	131
	3.6	Local Plasma Acceleration and Influence of Radiation	
		Pressure on Pellet Compression	131
	3.7	Oblique Incidence of Radiation	133
	3.8	Self-Generated Magnetic Fields Due to Radiation	
		Pressure	136
	3.9	Generation of Solitons	137
Refe	rences		142
THE	PHYSIC	S OF THE CORONAL REGION, M.G. Haines	
1.	Intro	duction	145
2.	Supra	thermal Electrons	149
	2.1	Experimental Evidence	149
	2.2	Origin of Fast Electrons	157
	2.3	A Self-Consistent Density Profile	163
		· · · · · · · · · · · · · · · · · · ·	

	2.4	Scaling of L, n _H and T _H	170
	2.5	Transport of Fast Electrons	175
	2.6	The Expanding Sheath	184
	2.7	Reduction of Fast-Electron Preheat	189
3.	Therm	al Electron Transport	189
	3.1	Experimental Evidence of Heat Inhibition	190
	3.2	Classical Heat Flux Limitation	199
	3.3	Turbulent Transport	205
	3.4	Atomic Physics and Degeneracy	208
4.	Gener	ation of Magnetic Fields	209
	4.1	Source of Magnetic Fields	209
	4.2	Non-Linear Development	211
	4.3	Measurements of Magnetic Field	211
	4.4	Heat Flux Inhibition	212
	4.5	Fast Ions Due to $\underline{J} \times \underline{B}$ Force and Hot Rings	213
	4.6	Effect of Magnetic Field on Absorption	214
Refe	erences	1 1	215
THE	PHYSIC	S OF THE SUPERDENSE REGION, M.H. Key	
1.	Intro	oduction	219
	1.1	Structure of Laser-Produced Plasmas	219
2.	Thern	nal Conduction	225
	2.1	Classical Conductivity	225
	2.2	Free Streaming Flux Limit	228
	2.3	Inhibited Conductivity	228
	2.4	Classical Thermal Wave	230
3.	Plasm	na Pressure Generated by Laser Irradiation of a Solid	232
	3.1	Introduction	232
	3.2	General Heat Wave Model	232
	3.3	Critical Density Chapman Jouguet Deflagration	235
	3.4	Self Regulating Absorption in Plane Geometry	236
	3.5	Self Regulating Absorption with Spherical Flow	237
	3.6	Electron Thermal Transport to Densities Above	
		Critical	238
	3.7	Self Regulating Ablation by Electrons (Spherical	

239

Geometry)

	3.8	Transient Pressure Due to Hot Electron Preheating	241
	3.9	Limiting Steady State Pressure Due to Fast Electron	
		Preheating	242
	3.10	Experimental Studies of Ablation Pressure	244
	3.11	Experimental Evidence for Inhibited Thermal Conduction	n
		and Reduced Ablation Pressure	249
	3.12	Experimental Evidence for Hot Electron Preheating	252
	3.13	Wavelength Scaling of Ablation Pressure and General	
		Discussion	255
4.	Shock	Waves	259
	4.1	Basic Theory of a Plane Shock Wave	259
	4.2	Collision of Two Equal Strong Shock Waves	264
	4.3	Spherical Implosion of a Strong Shock Wave	265
	4.4	Propagation of a Shock from a High Density into a Low	
		Density Medium	268
5.	Compre	ession of Matter	270
	5.1	Introduction	270
	5.2	Ideal Gases	270
	5.3	Fermi Degenerate Electron Gas	271
	5.4	The Thomas-Fermi Model	272
	5.5	Equations of State Including Binding Forces	273
	5.6	Experimental Determinations of the Equation of State	
		of Condensed Matter	274
	5.7	Rayleigh-Taylor Instabilities	276
6.	Plasm	a Compression and Heating in "Exploding Pusher"	
	Targe	ts	279
	6.1	Introduction	279
	6.2	Experimental Study of Exploding Pusher Targets	2 79
	6.3	Theoretical Models for Exploding Pusher Targets	289
	6.4	Conclusion	296
7.	Plasm	a Compression in Ablatively Imploded Targets	296
	7.1	Introduction	296
	7.2	Simple Shell Targets and Unshaped Laser Pulses	297
	7.3	Ablative Implosion Scaling with Laser Wavelength	304
	7.4	Compression with Shaped Pulses	309
	7.5	Ablative Implosion Experiments	311

Acknowledgements	316
References	317

FLUID	CODES,	G.J.	Pert
-------	--------	------	------

~

-

1.	The	Equations of Fluid Mechanics	323
	1.1	Introduction	323
	1.2	Hyperbolic Equations	324
	1.3	Discontinuities	326
	1.4	Finite Difference Approximations	328
	1.5	Partial Differential Equations with Constant	
		Coefficients	331
	1.6	Positivity and Monotonicity	333
2.	Eule	rian Codes	333
	2.1	First Order Schemes	333
	2.2	Second Order Schemes	337
	2.3	Flux Corrected Transport	347
	2.4	Weak Conservation	353
	2.5	Application to Multi-Dimensions	353
3.	Lagr	angian Codes	3 54
	3.1	One Dimensional Lagrangian Hydrodynamics	354
	3.2	Von Neumann and Richtmyer's Scheme	355
	3.3	Multidimensional Lagrangian Schemes	360
	3.4	Artificial Vi s cosity	363
4.	The	Diffusion Equation	365
	4.1	Finite Difference Form	369
	4.2	Stability Constraints	370
	4.3	Flux Limitation	376
5.	Incl	usion of Additional Physics	377
	5.1	Ion-Electron Equilibrium	377
	5.2	The Equation of State	379
	5.3	Laser Energy Deposition	382
6.	The	Complete Code	383
Re	ference	28	385

THEORY AND SIMULATION OF LASER PLASMA COUPLING, W.L. Kruer

1. Plasma Simulation Using Particles Codes 388

	1.1	Introduction	388
	1.2	A Physical Introduction to the Concepts and Techniques	389
	1.3	Comparison with an Independent Technique	392
	1.4	State of the Art of Particle Codes	3 95
2.	Laser	Plasma Heating-Parametric Instabilities	397
	2.1	Introduction	397
	2.2	Nonlinear Evolution of Parametric Instabilities	399
3.	Resona	nce Absorption of Intense Laser Light	403
	3.1	Introduction and Linear Theory	403
	3.2	Computer Simulations of Resonance Absorption	407
4.	Stimu	ated Scattering of Intense Laser Light	411
	4.1	Introduction	411
	4.2	Brillouin Instability	412
	4.3	Nonlinear Evolution of Brillouin Backscatter	416
5.	Compan	rison of Calculations with Experiments	419
	5.1	Introduction	419
	5.2	Density Profile Ste ep ening	420
	5.3	Absorption of Intense, Short Pulse-Length Light	422
	5.4	Heated Electron Temperatures	423
	5.5	Brillouin Scatter	425
	5.6	Other Plasma Processes	428
Ackno	owledge	ements	429
Refe	rences		430

1.	Mode1	s and Simulation techniques: the Metropolis	
	Monte	Carlo Method	433
	1.1	Introduction	433
	1.2	Models and Essential Parameters	434
	1.3	Simulation Techniques	436
	1.4	The Metropolis Monte Carlo Method	439
2.	Simulation of Microscopic Dynamics		
	2.1	Generalities	442
	2.2	One-Dimensional Codes	443
	2.3	Two-Dimensional Codes	444
	2.4	Molecular Dynamics Codes	445

	2.5	Time Averages	447
	2.6	Transport Coefficients	450
3.	A Sim	ple Model: the One Component Plasma	453
	3.1	The Model and its Applications	453
	3.2	Thermodynamics and Phase Diagram	454
	3.3	Static Pair Structure	459
	3.4	Single Particle Motion	462
	3.5	Plasma Oscillations	464
	3.6	Transport Coefficients	467
4.	Ionic	Mixtures	470
	4.1	Equation of State of Homogeneous Mixtures	470
	4.2	Phase Separation	472
	4.3	Enhancement of Thermonuclear Reaction Rates	474
	4.4	Molecular Dynamics Simulations	478
5.	The T	wo Component Plasma (TCP)	483
	5.1	Introduction	483
	5.2	Effective Pair Potentials	484
	5.3	Molecular Dynanamics of the Hydrogen Plasma	487
	5.4	Plasma Oscillations in the TCP	490
	5.5	Extensions and Future Work	492
Refe	erences		494
HIGH	I-POWER	PULSED LASERS, J.F. Holzrichter	
1.	Intro	duction	497
2.	Laser	-Target System	500
	2.1	Orders of Magnitude	504
	2.2	Lasers	506
	2.3	Laser Gain	508
	2.4	Laser Examples	512
	2.5	Gain and Saturation	515
	2.6	Frequency and Bandwidth	520
	2.7	Focusability	5 22
3.	Laser	Operational Constraints	528
	3.1	Gain Constraints and Chain Stability	528
	3.2	Target Isolation	530
	3.3	Transverse Oscillators	532

	3.4	Amplified Spontaneous Emission	533
	3.5	Losses	535
	3.6	Nonlinear Optics	5 36
	3.7	Self-Focussing	537
	3.8	Damage Limits	541
	3.9	Linear Phase Aberration Constraints	544
	3.10	Aperture Size, Fill Factor and Intensification	545
ŕ	3.11	Coherent Interference	547
	3.12	Summary	549
4.	Laser	Components	549
	4.1	Oscillators	549
	4.2	Amplifiers	557
	4.3	Spatial Filters and Relays	565
	4.4	Isolators	569
5.	Diagn	ostics	571
6.	Laser	Systems	577
	6.1	Generic Systems	578
	6.2	System Design	581
	6.3	Some Rules for Laser Stage Design	583
	6.4	Staging	583
	6.5	System Costs	590
	6.6	The Future	592
	6.7	Conclusions	592
Ackn	owledg	ements	592
Refe	rences		594

INTENSE PARTICLE BEAMS, A.J. Toepfer

1.	Pulsed Power Generators for Particle Beam Research	608
2.	Power Flow in Vacuum	. 621
3.	Intense Electron and Ion Beam Formation in Diodes	627
4.	Intense Beam Propagation and Interaction	639
5.	Power Flow and Energy Requirements for ICF	648
Ackno	owledgements	655
References		656

DIAGNOSTICS OF PARTICLE EMISSION FROM LASER-PRODUCED PLASMAS, R. Sig				
1.	Intro	ductory Remarks	661	
2.	Analy	tic Models for the Expansion of a Plasma Fluid into		
	the V	acuum	661	
	2.1	One Temperature Plasma Expansion	662	
	2.2	Two Temperature Plasma Expansion	669	
3.	Measu	rements of Ion and Electron Emission from the Plasma	675	
4.	Parti	cles from Nuclear Reactions	685	
	4.1	Some Characteristics of Fusion Reactions and Particle		
		Spectra	685	
	4.2	Neutron yield	688	
	4.3	Ion Temperature From the Line-Width of the Reaction		
		Products	691	
	4.4	Ion Temperature by the Relative Yield Method	693	
	4.5	Measurement of the pR-Product	695	
5.	Parti	cle Imaging of Laser Irradiated Targets	698	
	5.1	Pinhole Camera Imaging	698	
	5.2	Zone Plate Coded Imaging	699	
		00		
Ackno	owledge		706	
	owledge rences			
			706	
Refe	rences		706	
Refe	rences	ement	706	
Refe: DIAG	rences	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock	706 707	
Refe: DIAG	rences NOSTIC: Basic	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes	706 707 711	
Refe: DIAG	NOSTIC: Basic 1.1	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction	706 707 711 711	
Refe: DIAG	NOSTIC: Basic 1.1 1.2	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction Radiation Transport and Line Emission	706 707 711 711 712	
Refe: DIAG	NOSTIC Basic 1.1 1.2 1.3	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction Radiation Transport and Line Emission Bound-Free Absorption	706 707 711 711 712 717	
Refe: DIAG	NOSTIC: Basic 1.1 1.2 1.3 1.4 1.5	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction Radiation Transport and Line Emission Bound-Free Absorption Inverse Bremsstrahlung	706 707 711 711 712 717 718	
Refe: DIAG	NOSTIC: Basic 1.1 1.2 1.3 1.4 1.5 Diagno	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction Radiation Transport and Line Emission Bound-Free Absorption Inverse Bremsstrahlung High Density Effects	706 707 711 711 712 717 718	
Refe: DIAG	NOSTIC: Basic 1.1 1.2 1.3 1.4 1.5 Diagno	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction Radiation Transport and Line Emission Bound-Free Absorption Inverse Bremsstrahlung High Density Effects ostics Based on Intensities of Emission Lines from	706 707 711 711 712 717 718 719 723	
Refe: DIAG	NOSTIC: Basic 1.1 1.2 1.3 1.4 1.5 Diagno Highly	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction Radiation Transport and Line Emission Bound-Free Absorption Inverse Bremsstrahlung High Density Effects ostics Based on Intensities of Emission Lines from y-Ionised Atoms	706 707 711 711 712 717 718 719 723	
Refe: DIAG	NOSTIC: Basic 1.1 1.2 1.3 1.4 1.5 Diagno Highly	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction Radiation Transport and Line Emission Bound-Free Absorption Inverse Bremsstrahlung High Density Effects Ostics Based on Intensities of Emission Lines from y-Ionised Atoms Dependence of State of Ionisation on Laser-Irradiation	706 707 711 711 712 717 718 719 723	
Refe: DIAG	NOSTIC: Basic 1.1 1.2 1.3 1.4 1.5 Diagn Highl 2.1	ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction Radiation Transport and Line Emission Bound-Free Absorption Inverse Bremsstrahlung High Density Effects Ostics Based on Intensities of Emission Lines from y-Ionised Atoms Dependence of State of Ionisation on Laser-Irradiation Parameters	706 707 711 711 712 717 718 719 723	
Refe: DIAG	NOSTIC: Basic 1.1 1.2 1.3 1.4 1.5 Diagn Highl 2.1 2.2 2.3	Ement S BASED ON ELECTROMAGNETIC RADIATION, N.J. Peacock Theory of Emission and Absorption Processes Introduction Radiation Transport and Line Emission Bound-Free Absorption Inverse Bremsstrahlung High Density Effects Ostics Based on Intensities of Emission Lines from y-Ionised Atoms Dependence of State of Ionisation on Laser-Irradiation Parameters Stationary Versus Non-Stationary Ionisation Balance	706 707 711 711 712 717 718 719 723 723 725	

		Line Shapes	744		
	3.2	Intrinsic Line Shapes (Doppler Broadening, Pressure			
		Narrowing and Magnetic Field Effects)	746		
	3.3	Intrinsic Line Shapes (Stark Broadening)	750		
	3.4	Opacity Broadening	758		
	3.5	Derivation of <pr> from Optically Thick Lines</pr>	762		
4.	Analysis of X-Ray Emission: Diagnostic Apparatus and				
	Results		765		
	4.1	The Composite X-Ray Emission Spectrum	765		
	4.2	X-Ray and XUV Dispersion Instruments	767		
	4.3	Spatially-Resolved X-Ray Spectra from Microballoon			
		Targets	769		
	4.4	Absorption Spectroscopy: X-Ray Shadowgraphy of			
		Microballoon Targets	777		
	4.5	Time-Resolved X-Ray Spectroscopy	779		
	4.6	X-Ray and XUV Imaging Systems	781		
	4.7	Broad Band X-Ray Detectors	788		
5.	Diagnostics Based on Electromagnetic Emission at hv << kT_p		790		
	5.1	Stigmatic Grating Spectroscopy-Spectroheliography	790		
	5.2	Emission at $hv \sim \omega_{pe}$	792		
	5.3	Diagnostics Based on Electromagnetic Beam Probes	793		
Refe	eferences				

AUTHOR INDEX

807