CONTENTS

5

			Pages	
INTRODUCTION			- 9	
CHAPTER 1	BASIC CONCEPTS	OF INTRINSIC STOCHASTICITY		
1.1	Onset of stock	nasticity in deterministic hamiltonian		
	systems.			
1.1.1	A.J. Lichtenbe	erg Determination of the transition between adiabatic and stochastic motion	13-40	
1.1.2	D.F. Escande	Primary resonances do not overlap	41-51	
1.1.3	J.M. Greene	Calculation of KAM surfaces	53-62	
1.2	Consequences for physical systems.			
1.2.1	S. Aubry	Application of the Kolmogorov Arnold Moser theorems to structure problems in condensed matter	63-82	
1.2.2	S.W. Mc Donald	d and A. Kaufman Ray and wave optics of integrable and stochastic system	83-92	
1.3	Quantitative definitions of stochasticity			
1.3.1	G. Benettin an	nd L. Galgani Lyapunov characteristic exponents and stochasticity	93-114	
1.3.2	C. Froeschle,	G. Benettin, J.P. Scheidecker Numerical study of Lyapunov characte- ristic numbers and Kolmogorov entropy of dynamical systems with an increasing number of degrees of freedom	115	
1.3.3	F. Doveil	Overlap of bounce resonances and Kolmogorov entropy	117-128	
CHAPTER 2 CHARGED PARTI		CLE MOTIONS IN E.M. FIELDS		
2.1	A.N. Kaufman	Regular and stochastic particle motion in plasma dynamics	131-157	
2.2	C. Karney	Velocity-Space diffusion in a per- pendicularly propagating electros- tatic wave	159-168	

2.3	G. Smith	Stochastic motion due to a single wave in a magnetoplasma	169-179
2.4	R.H. Cohen	Stochastic motion of particles in mirror machines	181-191
2.5	J. Krommes	Self-consistent kinetic theory of stochasticity	193-203
CHAPTER 3	PLASMA HEATIN	G AND TRANSPORT	
3.1	Plasma heatin	g .	
3.1.1	A. Fukuyama	Stochastic acceleration of charged particles by an electrostatic wave in a magnetized plasma	207-219
3.1.2	Y. Gell and F	R. Nakach Stochastic heating of plasma in inhomogeneous magnetic fields	221-237
3.2	Plasma transp	port	
3.2.1	A.B. Recheste	er, M.N. Rosenbluth and R.B. White Statistical description of stochastic orbits in a Tokamak	239-259
3.2.2.	A. Samain and	d M. Dubois Disruptions in Tokamak	261-272
3.2.3	G. Casati, E.	Lazzaro and S. Nowak Stochastic effects induced by pulsed R.F. on trapped particles in a Tokamak	273-283
3.2.4	A. Lichtenber	rg, A. Riviere, T. Edlington, T. Todd The case for drift island diffusion : results from the Culham levitron	285-296
3.2.5	F. Hamzeh	Comments on overlapping and stochasticity in toroidal-systems	297-311
CHAPTER 4	DISSIPATIVE	SYSTEMS AND STRANGE ATTRACTORS	
4.1	Attractors as	nd the onset of turbulence	
4.1.1	Y. Pomeau	Strange attractors	315-328
4.1.2	Y. Pomean and	P. Manneville Intermittency: a generic phenomenon at the onset turbulence	329-340
4.1.3	P. Coullet, (C. Tresser and A. Arneodo Bifurcation and transition toward stochasticity for dissipative dyna- mical systems	341-363

4.1.4	C. Tresser an	d P. Coullet Critical transition to stochasticity	365-372
4.1.5	R. Lozy	Strange attractors: a class of mappings of R ² which leaves some cantor sets invariant	373-381
4.2	Applications	to plasma turbulence problems	
4.2.1	E.K. Maschke	and B. Saramito On the possible importance of genera- lized Lorenz equations in the theory of magneto-hydrodynamic stability	383-392
4.2.2	Y. Treve and	O.P. Manley A possible strange attractor in MHD flow	393-402
4.2.3	J.M. Wersinge	er, J.M. Finn and E. Ott Bifurcations and "strange" behavior in a coupled three wave system	403-413
4.2.4	J.C. Adam, M.	N. Bussac and G. Laval Stabilization of a linearly unstable mode by resonant non-linear coupling to damped modes	415-423
4.2.5	H. Lashinsky	Transition to turbulence in a plasma with discrete unstable modes	425-437
LIST OF PAR	TICIPANTS		439-44]
AUTHORS IND	EX		443